模糊控制学习心得

时间:2022-12-05 11:29:20 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
模糊控制学习心得

班别:电气143 学号:1407300043 姓名:范宝荣



模糊是人类感知万物,获取知识,思维推理,决策实施的重要特征。模糊清晰所拥有的信息容量更大,内涵更丰富,更符合客观世界。

在日常生活中,人们的思维中有许多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。人们常用的经验规则都是用模糊条件语句表达,例如,当我们拧开水阀往水桶里注水时,有这样的经验:桶里没水或水较少时,应开大水阀;桶里水较多时,应将水阀关小些;当水桶里水快满时,则应把阀门关得很小;而水桶里水满时应迅速关掉水阀。其中,“较少较多小一些很小,这些表示水位和控制阀门动作的概念都具有模糊性。即有经验的操作人员的控制规则具有相当的模糊性。模糊控制就是利用计算机模拟人的思维方式,按照人的操作规则进行控制,实现人的控制经验。

模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·A1965年首先提出,它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,模糊推理进行决策的一种高级控制策略。1974,英国伦敦大学教授Mamdani·H研制成功第一个模糊控制器,充分展示了模糊技术的应用前景。

尽管模糊控制理论已经取得了可观的进展,但与常规控制理论相比仍不成熟。模糊控制系统的分析和设计尚未建立起有效的方法,在很多场合下仍然需要依靠经验和试凑。近年来,许多人一直尝试将常规控制理论的概念和方法扩展至模糊控制系统,而模糊控制与神经网络相结合的方法已成为研究的热点,二者的结合有效地推动了自学习模糊控制的发展。 模糊控制易于获得由语言表达的专家知识,能有效地控制那些难以建立精确模型而凭经验可控制的系统,而神经网络则由于其仿生特性更能有效利用系统本身的信息,并能映射任意函数关系,具有并行处理和自学习能力,容错能力也很强。在集成大系统中,神经网络可用于处理低层感知数据,模糊逻辑可用于描述高层的逻辑框架[5]。模糊逻辑与神经网络的结合有两种情况:一是将模糊技术用于神经网络形成模糊神经网络,一是用神经网络实现模糊控制。这两方面均见于大量的研究文献。

常规模糊控制的两个主要问题在于:改进稳态控制精度和提高智能水平与适应能力。从大量文献中可以看出,在实际应用中,往住是将模糊控制或模糊推理的思想,与其他相对成熟的控制理论或方法结合起来,发挥各自的长处,从而获得理想的控制效果。

例如,利用模糊复合控制理论的分档控制,PIPID控制策略引入Fuzzy控制器,构成Fuzzy-PIFuzzy-PID复合控制;适应高阶系统模糊控制需要的三维模糊控制器;将精确控制和模糊控制结合起来的精确模糊混合控制;将预测控制与模糊控制相结合,利用预测模型对控制结果进行预报,并根据目标误差和操作者的经验应用模糊决策方法在线修正控制策略的模糊预测控制等。

模糊控制的发展过程中,提出了多种自组织、自学习、自适应模糊控制器。它们根据被控过程的特性和系统参数的变化,自动生成或调整模糊控制器的规则和参数,达到控制目的。这类模糊控制器在实现人的控制策略基础上,又进一步将人的学习和适应能力引入控制器,使模糊控制具有更高的智能性。自校正模糊控制器、参数自调整模糊控制等控制方法也较大地增强了对环境变化的适应能力。


模糊控制与其他智能控制方法的结合组成的模糊控制,如专家模糊控制能够表达和利用控制复杂过程和对象所需的启发式知识,重视知识的多层次和分类的需要,弥补了模糊控制器结构过于简单、规则比较单一的缺陷,赋予了模糊控制更高的智能。

二者的结合还能够拥有过程控制复杂的知识,并能够在更为复杂的情况下对这些知识加以有效利用。

基于神经网络的模糊控制能够实现局部或全部的模糊逻辑控制功能。 模糊控制器正向着自适应、自组织、自学习方向发展,使得模糊控制参数、规则在控制过程中自动地调整、修改和完善,从而不断完善系统的控制性能,达到更好的控制效果,而与专家系统、神经网络等其他智能控制技术相融合成为其发展趋势。

模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。1965年,美国的L.A.Zadeh创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。1974年,英国的E.H.Mamdani首先用模糊控制语句组成模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功。这一开拓性的工作标志着模糊控制论的诞生。

模糊控制实质上是一种非线性控制,从属于智能控制的范畴。模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。

所谓模糊控制,就是在控制方法上应用模糊集理论、模糊语言变量及模糊逻辑推理的知识来模拟人的模糊思维方法,用计算机实现与操作者相同的控制。该理论以模糊集合、模糊语言变量和模糊逻辑为基础,用比较简单的数学形式直接将人的判断、思维过程表达出来,从而逐渐得到了广泛应用。应用领域包括图像识别、自动机理论、语言研究、控制论以及信号处理等方面。在自动控制领域,以模糊集理论为基础发展起来的模糊控制为将人的控制经验及推理过程纳入自动控制提供了一条便捷途径。

如右图所示,模糊控制器的基本结构包括知识库、模糊推理、输入量模糊化、输出量精确化四部分。

知识库包括模糊控制器参数库和模糊控制规则库。模糊控制规则建立在语言变量的基础上。语言变量取值为等这样的模糊子集,各模糊子集以隶属函数表明基本论域上的精确值属于该模糊子集的程度。因此,为建立模糊控制规则,需要将基本论域上的精确值依据隶属函数归并到各模糊子集中,从而用语言变量值(大、中、小等)代替精确值。这个过程代表了人在控制过程中对观察


本文来源:https://www.wddqw.com/doc/5655307011a6f524ccbff121dd36a32d7275c776.html