菁优问答(测试版) 在线组卷 在线训练 菁优网更多试题 》试题(2012•义乌市)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1. (1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数; (2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积; (3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值. 考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.专题:几何综合题.分析:(1)由由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,又由等腰三角形的性质,即可求得∠CC1A1的度数; (2)由△ABC≌△A1BC1,易证得△ABA1∽△CBC1,然后利用相似三角形的面积比等于相似比的平方,即可求得△CBC1的面积; (3)由①当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,即可求得线段EP1长度的最大值与最小值.解答:解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1, ∴∠CC1B=∠C1CB=45°,..…(2分) ∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.…(3分) (2)∵△ABC≌△A1BC1, ∴BA=BA1,BC=BC1,∠ABC=∠A1BC1, ∴BA BC =BA1 BC1 ,∠ABC+∠ABC1=∠A1BC1+∠ABC1, ∴∠ABA1=∠CBC1, ∴△ABA1∽△CBC1.…(5分) ∴S△ABA1 S△CBC1 =(AB BC )2=(4 5 )2=16 25 , ∵S△ABA1=4, ∴S△CBC1=25 4 ;…(7分) (3)①如图1,过点B作BD⊥AC,D为垂足, ∵△ABC为锐角三角形, ∴点D在线段AC上, 在Rt△BCD中,BD=BC×sin45°=5 2 2 ,…(8分) 当P在AC上运动与AB垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1-BE=BD-BE=5 2 2 -2;…(9分) ②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+BE=2+5=7.…(10分)点评:此题考查了旋转的性质、相似三角形的判定与性质、全等三角形的判定与性质以及三角函数的应用.此题难度较大,注意数形结合思想的应用,注意旋转前后的对应关系. 本文来源:https://www.wddqw.com/doc/5c71058a2b4ac850ad02de80d4d8d15abe2300b0.html