神奇的莫比乌斯环 一、什么是莫比乌斯环? 德国数学家莫比乌斯(August Ferdinand Möbius, 1790-1868)发现将一个纸条的一端反转180度与另一端对接在一起,就形成了一个奇妙的环,后来人们为了纪念莫比乌斯的这一发现,将这样对接形成的环称之为“莫比乌斯环”。 二、莫比乌斯环怎样被发现的? 数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边界的纸圈儿呢? 对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家莫比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。 有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。 一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯取着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圈圈。 莫比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将一端的正面和背面粘在一起,这样就做成了只有一个面的纸圈儿。 圆圈做成后,莫比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。莫比乌斯圈激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。” 莫比乌斯圈就这样被发现了。 三、莫比乌斯环神奇在哪? 莫比乌斯环的奇妙之处有三: 1、莫比乌斯环只存在一个面。 2、如果沿着莫比乌斯环的中间剪开,将会形成一个比原来的莫比乌斯环空间大一倍的、具有正反两个面的环(在本文中将之编号为:环0),而不是形成两个莫比乌斯环或两个其它形式的环。 3、如果再沿着环0的中间剪开,将会形成两个与环0空间一样的、具有正反两个面的环,且这两个环是相互套在一起的(在本文中将之编号为:环1和环2),从此以后再沿着环1和环2以及因沿着环1和环2中间剪开所生成的所有环的中间剪开,都将会形成两个与环0空间一样的、具有正反两个面的环,永无止境……且所生成的所有的环都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。 四、莫比乌斯环的运用 数学中有一个重要分支叫“拓扑学”,主要是研究几何图形连续改变形状时的一些特征和规律的,“莫比乌斯圈”变成了拓扑学中最有趣的单侧面问题之一。 莫比乌斯圈的概念被广泛地应用到了建筑,艺术,工业生产中。 运用莫比乌斯圈原理我们可以建造立交桥和道路,避免车辆行人的拥堵。过山车;克莱因瓶;奇妙的“不可能”邮票;传送带;磁带等都是莫比乌斯环在生活中的应用。 本文来源:https://www.wddqw.com/doc/69766d1b094e767f5acfa1c7aa00b52acfc79c18.html