1.1.1 算法的概念(第1课时) 【课程标准】通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义. 【教学目标】1.理解算法的概念与特点; 2.学会用自然语言描述算法,体会算法思想; 3.培养学生逻辑思维能力与表达能力. 【教学重点】算法概念以及用自然语言描述算法 【教学难点】用自然语言描述算法 【教学过程】 一、序言 算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力. 在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想. 二、实例分析 例1:写出你在家里烧开水过程的一个算法. 解:第一步:把水注入电锅; 第二步:打开电源把水烧开; 第三步:把烧开的水注入热水瓶. (以上算法是解决某一问题的程序或步骤) 例2:给出求1+2+3+4+5的一个算法. 解:算法1 按照逐一相加的程序进行 第一步:计算1+2,得到3; 第二步:将第一步中的运算结果3与3相加,得到6; 第三步:将第二步中的运算结果6与4相加,得到10; 第四步:将第三步中的运算结果10与5相加,得到15. 算法2 可以运用公式1+2+3+„+=直接计算 第一步:取=5; 第二步:计算; 第三步:输出运算结果. (说明算法不唯一) 例3:(课本第2页,解二元一次方程组的步骤) (可推广到解一般的二元一次方程组,说明算法的普遍性) 例4:(必修2第129页)用“待定系数法”求圆的方程的大致步骤是: 第一步:根据题意,选择标准方程或一般方程; 第二步:根据条件列出关于,,或,,的方程组; 第三步:解出,,或,,,代入标准方程或一般方程. 三、算法的概念 通过对以上几个问题的分析,我们对算法有了一个初步的了解.在解决某些问题时,需要设计出一系列可操作或可计算的步骤,通过实施这些步骤来解决问题,通常把这些步骤称为解决这些问题的算法. 在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成. 四、知识应用 例5:(课本第3页例1)(难点是由质数的定义判断一个大于1的正整数是否为质数的基本方法) 练习1:(课本第4页练习2)任意给定一个大于1的正整数,设计一个算法求出的所有因数. 解:根据因数的定义,可设计出下面的一个算法: 第一步:输入大于1的正整数. 第二步:判断是否等于2,若,则的因数为1,;若,则执行第三步. 第三步:依次从2到检验是不是整除,若整除,则是的因数;若不整除,则不是的因数. 例6:(课本第4页例2) 练习2:设计一个计算1+2+„+100的值的算法. 解:算法1 按照逐一相加的程序进行 第一步:计算1+2,得到3; 第二步:将第一步中的运算结果3与3相加,得到6; 第三步:将第二步中的运算结果6与4相加,得到10; …… 第九十九步:将第九十八步中的运算结果4950与100相加,得到5050. 算法2 可以运用公式1+2+3+„+=直接计算 第一步:取=100; 第二步:计算; 第三步:输出运算结果. 练习3:(课本第4页练习1)任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积. 解:第一步:输入任意正实数; 第二步:计算; 第三步:输出圆的面积. 五、课堂小结 1. 算法的特性: ①有穷性:一个算法的步骤序列是有限的,它应在有限步操作之后停止,而不能是无限的. ②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可. ③可行性:算法中的每一步操作都必须是可执行的,也就是说算法中的每一步都能通过手工和机器在有限时间内完成. ④输入:一个算法中有零个或多个输入.. ⑤输出:一个算法中有一个或多个输出. 2. 描述算法的一般步骤: ①输入数据.(若数据已知时,应用赋值;若数据为任意未知时,应用输入) ②数据处理. ③输出结果. 六、作业 1. 有A、B、C三个相同规格的玻璃瓶,A装着酒精,B装着醋,C为空瓶,请设计一个算法, 本文来源:https://www.wddqw.com/doc/7b15203eeef9aef8941ea76e58fafab069dc440b.html