小学生六年级数学日记大全 今天中午,我正在做数学暑假作业。写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的: 有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数。求它的体积。 我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示。这可怎么入手啊! 正当我急得抓耳挠腮之际,我妈妈的一个同事来了。他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉。于是,他又教我另一种方法:先列出数,再逐一排除。我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字。这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条 棱长(且长度都为质数)之和。于是,我开始分辩这两个数各是哪个数。 最后,我得到了结果,为374立方厘米。我的算式是:209=11×1919=2+1711×2×17=374(立方厘米) 后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样。 解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。 今天我又遇到一道数学难题,费了好大的劲才解出来。题目是:两棵树上共有30只小鸟,乙树上先飞走4只,这时甲树飞向乙树3只,两棵树上的小鸟刚好相等。两棵树上原来各有几只小鸟? 我一看完题目,就知道这是还原问题,于是用还原问题的方法解。可验算时却发现错了。我便更加认真地重新做起来。我想,少了4只后一样多,那一半是13只,还原乙树是14只;甲树就是16只。算式为:(30—4)÷2=13(只);13—3+4=14(只);30—14=16(只)。答案为:甲树16只,乙树14只。 通过解这道题,我明白了,无论做什么题,都要细心,否则,即使掌握了解题方法,结果还会出错。 一回到家,我就静静地坐在书桌前思考这个问题。一次性筷子的形状是一个不规则的立体图形,怎样才能测算出它的体积呢?我思来想去,一会儿抓耳挠腮,一会儿摇摇头……,终于,有了一点眉目。我可以将一次性筷子放入装满水的容器中,这样容器中的水就会溢出来,溢出水的多少不就是筷子的体积吗?可是筷子比水轻,会浮在水面上,又该怎么办呢?可不可以用石头或胶布之类的东西将筷子固定住呢?我想应该是可以的,但这些办法测定起来又都太麻烦了,要是有更简便的方法该多好啊!经过冥思苦想,我终于自豪的笑了。 星期六上午,我和妈妈、姐姐去亮山公园玩,一棵大树映入我的眼帘。妈妈问:“欢欢,你能量出这棵树的高度吗?”“行,用一根跟它一样高的竹竿,再量那根竹竿的长度。”妈妈反驳道:“哪来那么长的竹竿?”“我……我……”我挠了挠头。忽然瞥见地上树的影子,一个念头从我的脑子里闪过:对了,老师不是刚教过比例知识吗?我兴奋地说:“姐姐!借你一用!”姐姐满脸疑惑:“怎么求?”“在同一地点,同一时间,影子的长度和物体的长度成正比例。先量出你的身高,再量出你影子的长度,算出你的身高和你影子的比,再量出这棵大树的影子长度,就能算出这棵大树的高度了。”我得意地说。 因为我平时喜欢制作小制作,所以身上总是带着一卷皮尺。我先量出姐姐的身高是1.56米,再量出她影子的长度是0.52米,他们的比是:1.56:0.52=3:1,量出这棵大树的影子长度是1.1米,再算出高度:1.1×3=3.3(米),这便是大树的高度了。妈妈和姐姐看着我,直竖大拇指。我乐呵呵地想:数学真有用! 看了小学生六年级数学日记大全还会看: 本文来源:https://www.wddqw.com/doc/848fe3454a2fb4daa58da0116c175f0e7dd1196a.html