浅谈数学教学中的一题多解与一题多变 【摘要】在教学实践中,有目的、有计划、适量地进行一题多变训练,有利于活跃思路,锻炼学生思维的灵活性,能够卓有成效地开拓学生的创新思维空间,使学生把所学过的知识融会贯通,使知识系统化,更灵活地运用知识,有利于提高归纳、综合、创新与探究等能力,提升综合素质和综合运用能力。 【关键词】数学 一题多解 一题多变 训练方法 在新课改中,如何真正做到减轻学生负担,提高教学质量呢?不妨灵活采用一题多变,从精练与善思入手。这样可以以一变应万变,触类旁通,既提高了学习效益,又培养了良好的学习习惯与思维品质,让同学们终身受益。 一题之“多”是指:一题多解、一题多变等方法,有目的、有重点地设计基本训练,有助于开拓思路,活跃思维,培养学生的创新能力。现就一题多变题的教学,谈谈自己的想法。 1.一题多解,利于激发学习兴趣 一题多解的题目要具有代表性,能包容大部分所学知识点,不能过于繁难,但也不能流于简单。过难挫伤学生研究学习的积极性,过于简单学生没有兴趣,这一步对激发学生学习、探究的兴趣很重要。 例如,有这样一道题目:甲、乙、丙三位同学合乘一辆出租车同往一个方向,事先约定三人分摊车资,甲在全程的1/3处下车,乙在全程的2/3处下车,丙坐完全程下车,车费共54元。问甲、乙、丙三位同学各付多少车费比较合理? 学生对此车资问题很感兴趣,甲、乙、丙三位同学各付多少车费比较合理,意见很不一致。经过尝试设计了3种方案:第一种方案由甲、乙、丙三人均分,即每人各付18元;第二种方案按路程分摊:甲、乙、丙所乘路程的比为1∶2∶3分别付费9元、18元、27元;第三种方案分段结算:车费共54元,如果按前1/3路程,中间1/3路程和最后1/3路程分别计算车费,则各为18元,开始的1/3路程需付18元,甲、乙、丙各付6元,中间的1/3路程需付18元,则乙、丙各付9元,最后的1/3路程需付18元,由丙承担,这样甲应付6元,乙应付15元,丙应付33元;从上例可以看出,同学们对此题很感兴趣,思维活跃,勇于探究,学习效果很明显。 2.一题多变,利于培养创新与探究能力 2.1 变换题设或结论,即通过对习题的题设或结论进行变换,从多个角度来探究同一个问题,这不仅可以让学生综合运用所学知识点解题,增强学生解题的应变能力,还培养了数学思维的深刻性和广阔性,从而培养创新思维的良好学习品质。 感谢您的阅读,祝您生活愉快。 本文来源:https://www.wddqw.com/doc/956ad30ac3c708a1284ac850ad02de80d4d806b8.html