【精华】高一数学教学工作计划3篇 高一数学教学工作计划 篇1 教学目标: 知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用. 过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质. 情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性. 教学重点: 重点从五个具体幂函数中认识幂函数的一些性质. 难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律. 教学程序与环节设计: 材料一:幂函数定义及其图象. 一般地,形如 的函数称为幂函数,其中 为常数. 幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种形式定义的函数,引导学生注意辨析. 下面我们举例学习这类函数的一些性质. 作出下列函数的图象:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律. 定义域 值域 奇偶性 单调性 定点 师:引导学生应用画函数的性质画图象,如:定义域、奇偶性. 师生共同分析,强调画图象易犯的错误. 第 1 页 共 25 页 材料二:幂函数性质归纳. (1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1); (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸; (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴. 例1、求下列函数的定义域; 例2、比较下列两个代数值的大小: [例3]讨论函数 的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性. 练习 1.利用幂函数的性质,比较下列各题中两个幂的值的大小: 2.作出函数 的图象,根据图象讨论这个函数有哪些性质,并给出证明. 3.作出函数 和函数 的图象,求这两个函数的定义域和单调区间. 4.用图象法解方程: 1.如图所示,曲线是幂函数 在第一象限内的图象,已知 分别取 四个值,则相应图象依次为:. 2.在同一坐标系内,作出下列函数的图象,你能发现什么规律? 高一数学教学工作计划 篇2 一、指导思想: 在我校整体建构和谐教学模式下,使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。 1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。 第 2 页 共 25 页 2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。 3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。 4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。 5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。 二、教材特点: 我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的`关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点: 1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。 2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。 3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。 4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。 高一数学教学工作计划 篇3 一、指导思想: 使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。 1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法, 第 3 页 共 25 页 本文来源:https://www.wddqw.com/doc/98a04aded938376baf1ffc4ffe4733687e21fc82.html