角平分线在三角形中的比例关系 关于角平分线,除了知道它把一个角平分为二,以及平分线上任意一点到其两边的距离相等外,它在三角形中还存在一些美丽的对称性质。 1,角平分线定理:如图P2,AD平分∠BAC交BC于点D,求证:BD∶DC=AB∶AC 【解析】用面积法来证明:如图P2-1,作DE⊥AC于点E,DF⊥AB于点F。则DE=DF,∴S△ABD∶S△ACD=AB∶BC;又S△ABD∶S△ACD=BD∶CD,故BD∶DC=AB∶AC。 2,如图JP2,在△ABC中,AD是∠BAC的外角平分线,则有AB∶AC=BD∶DC。 【解析】用面积法可证明此结论,方法同上,具体略。 利用上述结论,我们可以快速解决一些问题: 3,如图JP3,I是△ABC内角平分线的交点,AI交对应边于点D,求证:AI∶ID=(AB+AC)∶BC。 整理为word格式 【解析】根据角平分线定理,AI∶ID=AB∶BD=AC∶CD,∴AI∶ID=(AB+AC)∶(BD+CD)=(AB+AC)∶BC。 4,如图JP4,已知:PA=PB,∠APB=2∠ACB,AC与PB相交于点D,且PB=4,PD=3。求AD·DC的值。 【解析】如图JP4-1,过点P作∠APB的角平分线,交AC于点E。 根据角平分线定理,AP∶PD=AE∶ED=4∶3, ∴ED=3AD/7;又∠APB=2∠ACB, ∴∠EPD=∠BCD,∠ PDE=∠CDB,故△PDE∽△CDB, ∴PD∶DC=ED∶BD,即ED·DC=PD·BD=3, ∴(3AD/7)·DC=3,故AD·DC=7。 5,如图XZ5,已知:AD、AE分别为△ABC的内、外角平分线, 【解析】根据角平分线定理,AC∶AB=DC∶BD = EC∶BE, ∴(CD+BD)∶BD=(EC+BE)∶BE, 整理为word格式 本文来源:https://www.wddqw.com/doc/9c883505ee630b1c59eef8c75fbfc77da26997da.html