龙源期刊网 http://www.qikan.com.cn 数学在密码学中的应用浅析 作者:黄耀 来源:《现代交际》2017年第22期 摘要: 密码学作为一门交叉学科,涉及学科广泛,其中应用数学占很大比例,其地位在密码学中也越来越重要,本文简单介绍密码学中涉及数学理论和方法计算的各种算法基本理论及应用,并将密码学的发展史分为现代密码学和传统密码学,列举二者具有代表性的明文加密方法,并分别对其中一种方法进行加密思想的概括和阐述。 关键词: 密码学 应用数学 应用 中图分类号:TN918 文献标识码:A 文章编号:1009-5349(2017)22-0196-01 随着信息时代的高速发展,信息的安全越来越重要,小到个人信息,大到国家安全。信息安全主要是将计算机系统和信息交流网络中的各种信息进行数学化的计算和处理,保护信息安全,而密码学在其中正是处于完成这些功能的技术核心。在初期的学习当中,高等数学、线性代数、概率论等都是必须要学习的基础学科,但是涉及密码学的实际操作,数论和近世代数的数学知识仍然会有不同程度的涉及和应用,本文在这一基础上,讨论密码学中一些基本理论的应用。 一、密码学的含义及特点 密码学是由于保密通信所需从而发展起来的一门科学,其保密通讯的接受过程如下:初始发送者将原始信息(明文)进行一定方式转换(加密)然后发送,接受者收到加密信息,进行还原解读(脱密),完成保密传输信息的所有过程,但是由于传输过程是经由有线电或无线电进行信息传输,易被窃取者在信息传输过程中窃取加密信息,在算法未知的情况下恢复信息原文,称为破译。保密信息破译的好坏程度取决于破译者的技术及经验和加密算法的好坏。 实际运用的保密通信由两个重要方面构成:第一是已知明文,对原始信息进行加密处理,达到安全传输性的效果;第二是对截获的加密信息进行信息破译,获取有用信息。二者分别称为密码编码学和密码分析学,二者互逆,互相反映,特性又有所差别。 密码体制在密码发展史上是指加密算法和实现传输的设备,主要有五种典型密码体制,分别为:文学替换密码体制、机械密码体制、序列密码体制、分组密码体制、公开密钥密码体制,其中密码学研究目前较为活跃的是上世纪70年代中期出现的公开密钥密码体制。 二、传统密码应用 密码体制在1949年香农的《保密系统的通信理论》发表之前,密码传输主要通过简单置换和代换字符实现,这样简单的加密形式一般属于传统密码的范畴。置换密码通过改变明文排 本文来源:https://www.wddqw.com/doc/a8c0a135ce84b9d528ea81c758f5f61fb6362807.html