高考数学复习幂函数知识点归纳

时间:2023-11-19 20:12:30 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
优选精品 欢迎下载

-高考数学复习幂函数知识点归纳

形如y=xa(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数,以下是幂函数知识点归纳,希望对考生有帮助。 幂函数定义:

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域:

a为不同的数值时,幂函数的定义域的不同情况如下:如a为任意实数,则函数的定义域为大于0的所有实数;a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[q的奇偶性来确定,即如果同时q为偶数,则x不能小于0这时函数的定义域为大于0的所有实数;如果同q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。 性质:

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/qqp都是整数,则x^(p/q)=q

1 / 3


优选精品 欢迎下载

次根号(xp次方),如果q是奇数,函数的定义域是R如果q是偶数,函数的定义域是[0+)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x0,函数的定义域是(-0)(0+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x0a可以是任意实;

排除了为0这种可能,即对于x0x0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:

如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0这时函数的定义域为大于0的所有实数;如果同q为奇数,则函数的定义域为不等于0的所有实数。 x大于0时,函数的值域总是大于0的实数。

x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

2 / 3


本文来源:https://www.wddqw.com/doc/d5a3c078ff4ffe4733687e21af45b307e971f961.html