高一数学听课记录

时间:2022-12-17 08:03:38 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。




The Standardization Office was revised on the afternoon of December 13, 2020




2014 9 21

忠县中学 高一(3)班

课型 新授课

教学点评:

运用实例生动引出集合元素的概念,为了解集合含义作铺垫 充分体现了以学生为主体,教师为引导者的教学理念。

结合学生情况,充分调动课堂积极性 同一个f括号内约束条件相同;定义域的概念

整体代换思想

一个表达式中的x

运用简单例子帮助理解:函数解析式相同,值域取决于定义

老师精炼的总结,系统的巩固知识。并且 充分调动课堂气氛

授课 教师 课题

李金山 学科 数学

学校 班级

函数定义域,值域,函数值的求法

教师教学过程记录: 引入新知:

一.函数定义域的求法 (一)简单函数的定义域

1求下列函数的定义域:(1f(x)=1/x-2(2)f(x)=5x3 求解步骤:由已知x-20--------------------------写条件 x2---------------------------解不等式(组) 所以函数的定义域为{x|x2}-------下结论

总结:(1)若f(x)是整式,则定义域为R2)若f(x)是分式,则分母不能为03f(x)为偶次根式,则根号下的式子大于或等于0

5-x

练习:1.1f(x)=2f(x)=x12x3P19练习

x3总结:定义域:使每个式子有意义;生活中的实际 2.求下列函数的定义域

1x1

1y=2x+3(2)f(x)=3yx11x(4)y2

x1x11

(5)f(x)=(x1)0

x1

(二)复合函数的定义域

2已知f(x)的定义域为[0,2],求f(2x-1)的定义域。

练习:1.已知f(2x-1)的定义域为(-1,5],求f(x)的定义域。

f(x1)

2.已知函数f(x)的定义域为[0,2],那么函数g(x)=

5x1

二.函数值的求解

1.已知f(x)=3x+2,f(-1),f(a),f(1/a-1),f[f()]

x2(x1)

2.已知f(x)=x2(1x2)f(3),f(f(-1))(分段函数)

2x(x2)3.已知f(3x-1)=4x+1,f(2)=____

三.求函数的值域(概念的理解,重点) 1)y=x1(2)yx24x6x[1,5] 理解:yx21xR函数值域[0,+] 2x[-1,1]函数的值域[0,1] 3x[1,3]函数的值域[1,9]

求函数值的方法:画图;截图;确定取值范围(y轴)


本文来源:https://www.wddqw.com/doc/d8cc5f29185f312b3169a45177232f60dccce781.html