正弦二倍角公式: sin2α = 2cosαsinα 推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA 拓展公式:sin2A=2sinAcosA=2tanAcosA^2=2tanA/[1+tanA^2] 1+sin2A=(sinA+cosA)^2 余弦二倍角公式: 余弦二倍角公式有三组表示形式,三组形式等价: 1.Cos2a=Cosa^2—Sina^2=[1—tana^2]/[1+tana^2] 2.Cos2a=1-2Sina^2 3。Cos2a=2Cosa^2-1 推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2—1 =1-2(sinA)^2 正切二倍角公式: tan2α=2tanα/[1-(tanα)^2] 推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1—(tanA)^2] 降幂公式: cosA^2=[1+cos2A]/2 sinA^2=[1—cos2A]/2 变式:sin2α=sin2α+π4—cos2α+4π=2sin2a+4π—1=1-2cos2α+4π; cos2α=2sinα+4πcosα+4π 本文来源:https://www.wddqw.com/doc/db1060fdf58a6529647d27284b73f242326c31b0.html