信息化与大数据时代下生物心理社会医学模式的发展趋势 摘要:信息化是以现代通信、网络、数据库技术为基础,对所研究对象各要素汇总至数据库,供特定人群生活、工作、学习、辅助决策等和人类息息相关的各种行为相结合的一种技术。 生物心理社会医学是一种从生物学与心理学、社会学的统一来看人类健康和疾病的医学模式。它出现于二次世界大战之后,是对生物医学模式的辩证否定。 1948年世界卫生组织在其宪章中把健康定义为“一种在身体上、精神上和社会上的完善状态,而不仅仅是没有疾病和衰弱现象”,第一次表达了这种医学模式的基本思想。1977年美国医学家G.L.恩格尔在《需要新的医学模式:对生物医学的挑战》一文中,首次明确提出并系统阐述了生物心理社会医学模式的概念,在医学界引起广泛注意,我国于80年代初开始探讨从生物医学转向生物心理社会医学的理论与实践。这种新医学模式的特点是,沿着系统论思路,把人理解为生物的、心理的、社会的三种属性的统一体,人的健康和疾病不仅是生物学过程,而且有心理和社会的因素,要从生物、心理、社会相统一的整体水平来理解和防治疾病。它主张在已有生物医学的基础上,加强心理和社会因素的研究和调控,相应地发展了医学心理学和心身医学、医学社会学和社会医学。 大数据(Big data)又称巨量资料、海量资料,指的是所涉及的资料容量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。从另一个角度上来讲,大数据是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用形成的智力资源和知识服务能力。(维基百科) 1 大数据是网络时代的产物 近年来在物理、天文、生物、统计等学科领域和金融、气 象、军事、通讯行业中需要处理的数据已经形成了大数据现象,需要处理的数据容量发展如此之快,已经不能再用GB和TB为单位来衡量数据的存储容量,以P(1000个T),E(一百万个T)或Z(10亿个T)为计量单位的应用也将会十分常见。但是大数据真正被多数人认识和关注则是由它在互联网出现而开始的。首先是互联网的用户数量以及用户使用网络的时间的增长使用户行为数据激增,其次是随着网络应用的多媒体化,网络数据由纯文本演变为图片、音频、视频等多种格式,造成数据量大增。另外随着物联网和云计算、云存储的出现和发展,互联网节点由单一的PC机变为包括PC在内的各种智能终端,用户随时随地在线,使互联网成为一个充满海量信息流的立体网络。 Facebook创始人扎克伯格在Web2.0峰会上宣布,根据Facebook统计数据,社交分享信息量以倍数增长,今天分享信息总量比两年前增加了两倍,从现在开始后的一年,用户所产生的信息分享总量又将会翻番。互联网上不断增加的数据为互联网公司提供了进行数据挖掘和数据分析的物质基础,互联网公司可以通过对用户网络行为数据的分析来了解用户的网络行为习惯,改进服务推广模式和广告推送途径,从而获取更大的收益。目前我国大型的网络运营、电子商务企业都有专业的人员来进行大数据分析,对包括门户、搜索引擎、电子商务、SNS等业务产生的数据对用户的网上浏览、购物、娱乐习惯进行分析,为各种服务的精准投放提供决策依据,去适应或者影响用户的网络活动习惯,从而在互联网获得更大的发展空间。大数据时代已经在不知不觉中降临到我们的生活中,越来越多的数据应用在不断地改变我们的生活方式。 2 大数据为生物医学研究和医疗信息化带来机遇 大数据在许多行业和学科领域的深入应用对生物医学研究的手段方法都带来了改变。生物医学研究领域,常使用统计学方法来处理和分析科学实验或者临床研究的数据,为了分析结果的准确性,实验分析抽取样本的数量越来越大,而网络和云计算、云存储等信息技术与医学的结合使生物研究获得大数据 更加方便和迅捷,生物医学的研究开始基于网络、云计算和大数据存储和大数据样本进行。例如2009年谷歌公司根据用户上网搜索内容对甲型H1N1流感的流行与暴发进行了预测,使公共卫生机构的官员获得了非常有价值的数据信息。我国深圳国家基因库中的样本量已达130万份,其中人类样本115万份,动植物、微生物等其他样本15万份。至2013年底,预计可有1000万份溯源生物样本,2015年底达到3000万份生物样本。而美国GenBank数据库中登录的DNA序列总量在2002年就已超过了280亿个碱基对。生物医学研究因为样本数据资源的极大丰富而更容易获取成果,基于大数据挖掘和分析方法的生物医学研究已经在促进人类健康方面取得了巨大成就,美国一个医疗小组对一名“腓骨肌萎缩症(CMT)”病人和他的10余名亲属进行全基因组测序,随后使用专用设备和先进的统计分析软件对获得的数百G的数据进行对比分析,很快就精确地获得了致病基因和发生突变的位点,为该疾病的预防提了可靠的遗传学依据。乔布斯在患胰腺癌以后也曾做过基因测序,希望能够通过找出DNA中有缺陷片断的方法来战胜癌症。目前我国深圳国家基因库以生物基因资源为依托,开始了大数据与医学和其他产业的整合与应用,如“全国出生缺陷样本联盟”,针对我国高发的出生缺陷、单基因遗传病、原因不明的妊娠异常在全国10个重点省市收集3万份临床样本及表型信息。为进一步研究影响出生缺陷的遗传机制和环境因素,提升我国生育健康研究的整体水平提供基础数据性支持,推动早期筛查、诊断、治疗、康复的防治技术研究。 随着医疗机构信息化建设的不断发展,以及信息化管理和物联网的应用,医疗护理工作流程中产生的数据越来越多地被医院信息系统收集和存储。医院信息中心存储的不仅是医嘱、护理记录、药物使用等诊疗数据,而是所有医患角色、医疗设备、管理和服务人员在医疗系统中所产生的所有数据。在现代医院信息化管理的“电子化、信息化、数字化、智能化”要求之下,医院基础数据的存储量已经可以用TB甚至PB来计量。针对医院的大数据应用一般可以分为两种:一是用于医院管理,如对用药、流程等进行挖掘和分析;另一种是用于临床支持,如用于临床科学研究,或者用于实时的辅助临床支持。医院决策系统是基于前者的应用,它能够提供对医院各个单位和医疗活动各个环节的整体评价分析,从而为决策者进行医护质量和医疗安全的管理和改进提供参考。医院在接诊、治疗过程中收集到的各种第一手临床诊断、治疗数据则除了为医生临床诊断和治疗提供有用信息之外,还为医疗科研提供了最真实准确的样本数据。目前我国医疗卫生信息化建设取得了很大进展,国家在区域医疗卫生信息化、医院信息化管理系统和基层医疗卫生信息化等方面都加大了投入,并与多个学科领域的研究成果相结合,推动大数据在我国临床医疗和科研中的应用。 3 大数据时代医学信息化面临的挑战 在大数据迅速发展的背景下,医学信息化的发展也面临着一些必须解决的问题。 1)数据共享的问题。美国国立生物技术信息中心(NCBI)存储了分子生物学、生物化学、遗传学领域的海量数据,其数据是对科学家无偿提供的。但是根据规定,美国科学家要想拿到政府经费,必须在申请课题时就承诺在课题完成后,将详细的研究数据提供给NCBI,这是NCBI获得大量数据的根本保证。而我国生物医学科研部门和医疗机构所积累的海量科研和临床数据目前多数仍然处于孤立使用的状态,机构之间的数据共享应用非常有限,数据孤岛现象限制了提高生物医学研究效率、建立社会医疗健康保障体系和减轻病人重复消费的经济负担。而这些机构因为利益的原因,对于拥有的医学科研数据和诊疗资料都持保护态度,不愿意向社会和同行提供数据服务。因此需要有相应的政策和措施,让医学研究机构和医疗机构的数据相互共享,真正形成生物医学研究、国民健康档案和医药信息大数据平台。 本文来源:https://www.wddqw.com/doc/dd13ad2be3bd960590c69ec3d5bbfd0a7856d557.html