求导数练习题

时间:2023-02-26 23:08:11 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
.

1 求下列函数的导数

(1)y3x2 y_______________ 6x

2

x24x11x2

(2)y y_______________ 222

(xx1)1xx

(3)yxnx y_______________ n(x(4)y

n

n1

1)

xm21m11

2x2 ,则y_______________ mxmxxxxx

3

x2

(5)yxlog3x ,则y_______________ 3xlog3x

ln3

2

(6)yecosx ,则y_______________ e(cosxsinx)

5432

(7)y(x1)(3x1)(1x) ,则y_________18x5x12x12x2x3

2

3

xx

xsec2xtanxtanx

(8)y ,则y_______________

x2x

(9)y

1cosxxsinxx

,则y_______________ 2

(1cosx)1cosx

(10)y

21lnx

,则y_______________

x(1lnx)21lnx

2x(sinxcosx)(x21)(cosxsinx)1x2

(11)y ,则y___________

(sinxcosx)2sinxcosx





2、求下列复合函数的导数

(1)yx1x ,则y_______________

2

12x21x

2

2



2

23

(2)y(x1) ,则y_______________ 6x(x1)

'.


.

(1x2)2(12xx2)1x23

) ,则y_______________ 3(3)y(

(1x)41x

(4)yln(lnx) ,则y_______________

1 xlnx

(5)yln(sinx) ,则y_______________ cotx (6)ylg(xx1) ,则y_______________

2

2x11



x2x1ln10

11x

2

(7)yln(x1x2) ,则y_______________



(8)yln

11x1x

,则y_______________

2

1x1xx1x

3

(9)y(sinxcosx) ,则y_______________ 3cos2x(sinxcosx) (10)ycos4x ,则y_______________ 6cos4xsin8x (11)ysin1x2 ,则y_______________

3

x1x2

cos1x2

222

(12)y(sinx) ,则y_______________ 6xsinxcosx

23

(13)ye

x1

,则y_______________ e

x1



sinx

(14)y2(15) e

x

sinx

,则y_______________ ln22cosx

sin2x,则y_______________ ex(2cos2xsin2x)

'.


本文来源:https://www.wddqw.com/doc/e641d48b68eae009581b6bd97f1922791788be4b.html