有关三角形的变式题专题
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
2.已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F. (1)求证:AN=BM; (2)求证:△CEF为等边三角形; (3)将△ACM绕点C按逆时针方向旋转90 O,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明). 二、以等腰直角三角形为基础 5.(2008山东泰安)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC. (1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DCBE. A B 图1 6、(2009年牡丹江)已知Rt△ABC中,ACBC,∠C90,D为AB(第边的中22题) D C 图2 E 点,EDF90° , EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当EDF绕D点旋转到DEA于CE时(如图1),易证S△DEFS△CEF1 S△ABC.2当EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明. A A A D E C D E C 图2 F B E 图3 D C B B F F 图1 7、用两个全等的等边三角形△ABC和△ACD拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB、AC重合.将三角尺绕点A按逆时针方向旋转. (1)当三角尺的两边分别与菱形的两边BC、CD相交于点E、F时(如图所示),通过观察或测量BE、CF的长度,你能得出什么结论?并证明你的结论; (2)当三角尺的两边分别与菱形的两边BC、CD的延长线相交于点E、F时(如图所示),你在(1)中得到的结论还成立吗?说明理由。 ADF AFD BEC BCE 8.如图1、图2、图3,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90º, (1)在图1中,AC与BD相等吗,有怎样的位置关系?请说明理由。 (2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗,还具有那种位置关系吗?为什么? (3)若△COD绕点O顺时针旋转一定角度后,到达图3的位置,请问AC与BD还相等吗?还具有上问中的位置关系吗?为什么? 10.已知:在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的左侧作等腰直角△ADE,解答下列各题:如果AB=AC,∠BAC=90°. (i)当点D在线段BC上时(与点B不重合),如图甲,线段BD,CE之间的位置关系为(ii)当点D在线段BC的延长线上时,如图乙,i)中的结论是否还成立?为什么? 15、如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题: (1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系; (2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成B 立,请说明理由。 B M E E D F F D P O C A 图① N A 图② 图③ C 17、如图,过线段AB的两个端点作射线AM、BN,使AM∥BN,按下列要求画图并回答: 画∠MAB、∠NBA的平分线交于E。 (1)∠AEB是什么角? (2)过点E作一直线交AM于D,交BN于C,观察线段DE、CE,你有何发现? (3)无论DC的两端点在AM、BN如何移动,只要DC经过点E,①AD+BC=AB;②AD+BC=CD谁成立?并说明理由。 19、如图所示,已知D是等腰△ABC底边BC上的一点,它到两腰AB、AC的距离分别为DE、DF,CM⊥AB,垂足为M,请你探索一下线段DE、DF、CM三者之间的数量关系, 并给予证明. AMFEBDC 20.如图,在△ABC中,∠A=90°,D是AC上的一点,BD=DC,P是BC上的任一点,PE⊥BD,PF⊥AC,E、F为垂足.求证:PE+PF=AB. 21、已知四边形ABCD中,ABAD,BCCD,ABBC,∠ABC120,∠MBN60,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F. 当∠MBN绕B点旋转到AECF时(如图1),易证AECFEF. 当∠MBN绕B点旋转到AECF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明. A A A E M E M BB B F C D DD CC F F NNNE M 22(2011年浙江省杭州市模2)(本小题满分10分) (图1) (图2) (图3) 如图1,点P、Q分别是边长为4cm的等边∆ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s, (1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数; (2)何时∆PBQ是直角三角形? (3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数; A A B P M M Q 第8题图1 C P 第8题图2 B C Q 24、如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M. (1) 求证:MB=MD,ME=MF (1) 当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. 28.已知,如图①所示,在△ABC和△ADE中,ABAC,ADAE,BACDAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BECD;②AMAN; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立. B 图① C M N A E D B M E 图② C N D A 本文来源:https://www.wddqw.com/doc/f21b6f89de3383c4bb4cf7ec4afe04a1b071b0f0.html