小学奥数几何难题|小学奥数行程问题、几何题练习题

副标题:小学奥数行程问题、几何题练习题

时间:2022-05-17 19:57:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#小学奥数# 导语】在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。以下是©文档大全网整理的《小学奥数行程问题、几何题练习题》相关资料,希望帮助到您。

1.小学奥数行程问题练习题

  1、一列客车从甲城开往乙城要8个小时,一列火车从乙城开往甲城要12个小时。两车同时从两城开出,相遇时客车行了264千米,求甲乙两个城市之间相距多少千米?
  2、某船往返于相距180千米的两港之间,顺水而下要10个小时,逆水而上需要用15个小时。由于暴雨后水速增加,该船顺水而行只需9个小时,那么逆水而行需要多少个小时?
  3、甲乙两个人骑自行车分别从AB两地同时相向而行,第一次两车在距离B地7千米的地方相遇,相遇后两车继续往前走,一直到达对方后立即返回,返回时在距离A地4千米处又相遇了。那么AB两地相距多少千米?
  4、甲乙丙三人,甲每分钟走60米,乙每分钟走70千米,丙每分钟走80千米,甲乙从东镇,丙冲西镇,同时相向出发,丙遇到了乙后,再经过了10分钟遇到了甲,请问两镇之间相距多少千米?
  5、在10千米赛跑中,当甲到达了终点时,超过乙千米,超过了丙4千米,当乙到达重点时间,丙离重终点还有多少千米? 

2.小学奥数行程问题练习题

  1、汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?

  解答:假设AB两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时)。

  2、赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?

  解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4小时,下山时间为12÷6=2小时,上山、下山的平均速度为:12×2÷(4+2)=4(千米/时),由于赵伯伯在平路上的速度也是4千米/时,所以,在每天锻炼中,赵伯伯的平均速度为4千米/时,每天锻炼3小时,共行走了4×3=12(千米)=12000(米)。

3.小学奥数行程问题练习题

  1、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。问:羊再跑多远,马可以追上它?

  2、甲乙辆车同时从ab两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求ab两地相距多少千米?

  3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?

  4、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

  5、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

4.小学奥数几何题练习题

  1、画一个周长12.56厘米的圆,并用字母标出圆心和一条半径,再求出这个圆的面积。

  2、学校有一块圆形草坪,它的直径是30米,这块草坪的面积是多少平方米?如果沿着草坪的周围每隔1.57米摆一盆菊花,要准备多少盆菊花?

  3、一个圆和一个扇形的半径相等,圆面积是30平方厘米,扇形的圆心角是36度。求扇形的面积。

  4、前轮在720米的距离里比后轮多转40周,如果后轮的周长是2米,求前轮的周长。

  5、一个圆形花坛的直径是10厘米,在它的四周铺一条2米宽的小路,这条小路面积是多少平方米?

  6、学校有一块直径是40M的圆形空地,计划在正中央修一个圆形花坛,剩下部分铺一条宽6米的水泥路面,水泥路面的面积是多少平方米?

5.小学奥数几何题练习题

  有一个长方体木块,长125厘米,宽40厘米,高25厘米。把它锯成若干个体积相等的小正方体,然后再把这些小正方体拼成一个大正方体。这个大正体的表面积是多少平方厘米?
  分析与解一般说来,要求正方体的表面积,一定要知道正方体的棱长。题中已知长方体的长、宽、高,同正方体的棱长又没有直接联系,这样就给解答带来了困难。我们应该从整体出发去思考这个问题。
  按题意,这个长方体木块锯成若干个体积相等的小正方体后,又拼成一个大正方体。这个大正方体的体积和原来长方体的体积是相等的。已知长方体的长、宽、高,就可以求出长方体的体积,这就是拼成的大正方体的体积。进而可以求出正方体的棱长,从而可以求出正方体的表面积了。
  长方体的体积是
  125×40×25=125000(立方厘米)
  将125000分解质因数:
  125000=2×2×2×5×5×5×5×5×5
  =(2×5×5)×(2×5×5)×(2×5×5)
  可见大正方体的棱长是
  2×5×5=50(厘米)
  大正方体的表面积是
  50×50×6=15000(平方厘米)
  答:这个大正方体的表面积是15000平方厘米。

本文来源:https://www.wddqw.com/hD9h.html