【#初三# 导语】学习效率的高低,是一个学生综合学习能力的体现。在学生时代,学习效率的高低主要对学习成绩产生影响。当一个人进入社会之后,还要在工作中不断学习新的知识和技能,这时候,一个人学习效率的高低则会影响他(或她)的工作成绩,继而影响他的事业和前途。可见,在中学阶段就养成好的学习习惯,拥有较高的学习效率,对人一生的发展都大有益处。下面是©文档大全网为您整理的《初三数学练习册答案》,仅供大家参考。
1.初三数学练习册答案 篇一
1、21
2、1.2,14.4
3、C
4、A
5、CD=3,AB=6,B′C′=3,
∠B=70°,∠D′=118°
6、(1)AB=32,CD=33;
(2)88°.
7、不相似,设新矩形的长、宽分别为a+2x,b+2x,
(1)a+2xa-b+2xb=2(b-a)xab,
∵a>b,x>0,
∴a+2xa≠b+2xb;
(2)a+2xb-b+2xa=(a-b)(a+b+2x)ab≠0,
∴a+2xb≠b+2xa,
由(1)(2)可知,这两个矩形的边长对应不成比例,所以这两个矩形不相似。
2.初三数学练习册答案 篇二
1.DE∶EC.基本事实92.AE=5.基本事实9的推论
3.A4.A5.52,536.1:2(证明见7)7.AOAD=2(n+1)+1.理由是:∵AEAC=1n+1,设AE=x,则AC=(n+1)x,EC=nx.过D作DF∥BE交AC于点F.∵D为BC的中点.∴EF=FC.∴EF=nx2.∵△AOE∽△ADF.∴AOAD=AEAF=2n+2=2(n+1)+1.
【第2课时】
1.∠ADC=∠ACB或∠ACD=∠B2.∠C=∠E或∠B=∠D3.B4.C5.C6.△ABC∽△AFG.7.△ADE∽△ABC,△ADE∽△CBD,△CBD∽△ABC.8.略.
【第3课时】
1.AC2AB2.4.3.C4.D5.23.6.∵ADQC=2,DQCP=2,∠D=∠C.∴△ADQ∽△QCP.7.两对.
∵∠BAC=∠BDC,∠AOB=∠DOC,∴△AOB∽△DOC.∴AOBO=DOCO.∵∠AOD=∠BOC.∴△AOD∽△BOC.
【第4课时】
1.当AE=3时,DE=6;当AE=163时,DE=8.2.B3.B4.A5.△AED∽△CBD.∵∠A=∠C,AECB=12,ADCD=12.6.∵△ADE∽△ABC.∴∠DAE=∠BAC.∴∠DAB=∠EAC.∵ADAB=AEAC,∴△ADB∽△AEC.7.△ABC∽△ADE,△AEF∽△BCF,△ABD∽△ACE.
【第5课时】
1.5m2.C3.B4.1.5m5.连接D1D并延长交AB于点G.∵△BGD∽△DMF,∴BGDM=GDMF;∵△BGD1∽△D1NF1,∴BGD1N=GD1NF1.设BG=x,GD=y.则x1.5=y2,x1.5=y+83.x=12
y=16,AB=BG+GA=12+3=15(m).6.12.05m.1.3
1.82.9163.A4.C5.A
3.初三数学练习册答案 篇三
1、21
2、1.2,14.4
3、C
4、A
5、CD=3,AB=6,B′C′=3,
∠B=70°,∠D′=118°
6、(1)AB=32,CD=33;
(2)88°.
7、不相似,设新矩形的长、宽分别为a+2x,b+2x,
(1)a+2xa-b+2xb=2(b-a)xab,
∵a>b,x>0,
∴a+2xa≠b+2xb;
(2)a+2xb-b+2xa=(a-b)(a+b+2x)ab≠0,
∴a+2xb≠b+2xa,
由(1)(2)可知,这两个矩形的边长对应不成比例,所以这两个矩形不相似.
【怎样判定三角形相似第1课时答案】
1、DE∶EC,基本事实9
2、AE=5,基本事实9的推论
3、A
4、A
5、5/2,5/3
6、1:2
7、AO/AD=2(n+1)+1,
理由是:
∵AE/AC=1n+1,设AE=x,则AC=(n+1)x,EC=nx,过D作DF∥BE交AC于点F,
∵D为BC的中点,
∴EF=FC,
∴EF=nx/2.
∵△AOE∽△ADF,
∴AO/AD=AE/AF=2n+2=2(n+1)+1.
【怎样判定三角形相似第2课时答案】
1、∠ADC=∠ACB或∠ACD=∠B
2、∠C=∠E或∠B=∠D
3-5BCC
6、△ABC∽△AFG.
7、△ADE∽△ABC,△ADE∽△CBD,△CBD∽△ABC.
【怎样判定三角形相似第3课时答案】
1、AC/2AB
2、4
3、C
4、D
5、23.
6、∵AD/QC=2,DQ/CP=2,∠D=∠C,
∴△ADQ∽△QCP.
7、两对,
∵∠BAC=∠BDC,∠AOB=∠DOC,
∴△AOB∽△DOC,
∴AO/BO=DO/CO,
∵∠AOD=∠BOC,
∴△AOD∽△BOC.
4.初三数学练习册答案 篇四
1、DE∶EC,基本事实9
2、AE=5,基本事实9的推论
3、A
4、A
5、5/2,5/3
6、1:2
7、AO/AD=2(n+1)+1,
理由是:
∵AE/AC=1n+1,设AE=x,则AC=(n+1)x,EC=nx,过D作DF∥BE交AC于点F,
∵D为BC的中点,
∴EF=FC,
∴EF=nx/2.
∵△AOE∽△ADF,
∴AO/AD=AE/AF=2n+2=2(n+1)+1.
【怎样判定三角形相似第2课时答案】
1、∠ADC=∠ACB或∠ACD=∠B
2、∠C=∠E或∠B=∠D
3-5BCC
6、△ABC∽△AFG.
7、△ADE∽△ABC,△ADE∽△CBD,△CBD∽△ABC.
【怎样判定三角形相似第3课时答案】
1、AC/2AB
2、4
3、C
4、D
5、23.
6、∵AD/QC=2,DQ/CP=2,∠D=∠C,
∴△ADQ∽△QCP.
7、两对,
∵∠BAC=∠BDC,∠AOB=∠DOC,
∴△AOB∽△DOC,
∴AO/BO=DO/CO,
∵∠AOD=∠BOC,
∴△AOD∽△BOC.
【怎样判定三角形相似第4课时答案】
1、当AE=3时,DE=6;
当AE=16/3时,DE=8.
2-4BBA
5、△AED∽△CBD,
∵∠A=∠C,AE/CB=1/2,AD/CD=1/2.
6、∵△ADE∽△ABC,
∴∠DAE=∠BAC,
∴∠DAB=∠EAC,
∵AD/AB=AE/AC,
∴△ADB∽△AEC.
7、△ABC∽△ADE,△AEF∽△BCF,△ABD∽△ACE,
【怎样判定三角形相似第5课时答案】
1、5m
2、C
3、B
4、1.5m
5、连接D₁D并延长交AB于点G,
∵△BGD∽△DMF,
∴BG/DM=GD/MF;
∵△BGD₁∽△D₁NF₁,
∴BG/D₁N=GD₁/NF₁.
设BG=x,GD=y,
则x/1.5=y/2,x/1.5=y+83.x=12
y=16,AB=BG+GA=12+3=15(m).
6、12.05m.
5.初三数学练习册答案 篇五
基础知识
1、B
2、B
3、D
4、y=(50÷2-x)x=25x-x2
5、y=200x2+600x+600
6、题目略
(1)由题意得a+1≠0,且a2-a=2所以a=2
(2)由题意得a+1=0,且a-3≠0,所以a=-1
7、解:由题意得,大铁片的面积为152cm2,小铁片面积为x2cm2,则y=152–x2=225–x2
能力提升
8、B
9、y=n(n-1)/2;二次
10、
(1)S=x×(20-2x)
(2)当x=3时,S=3×(20-6)=42平方米
11、
(1)S=2x2+2x(x+2)+2x(x+2)=6x2+8x,即S=6x2+8x;
(2)y=3S=3(6x2+8x)=18x2+24x,即y=18x2+24x
探索研究
12、解:(1)如图所示,根据题意,有点C从点E到现在位置时移的距离为2xm,即EC﹦2x.
因为△ABC为等腰直角三角形,所以∠BCA﹦45°.
因为∠DEC﹦90°,所以△GEC为等腰直角三角形,以GE﹦EC﹦2x,所以y=1/2×x×2x=2x2(x≥0).
(3)当重叠部分的面积是正方形面积的一半时,即y=1/2×42=8,所以2x2=8解得x﹦2(s).因此经过2s,重叠部分的面积是正方形面积的一半。