高三年级数学必修二复习知识点

时间:2022-08-03 02:11:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#高三# 导语】与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。®文档大全网高三频道为你精心准备了《高三年级数学必修二复习知识点》助你金榜题名!

1.高三年级数学必修二复习知识点


  正弦定理和余弦定理

  正弦定理:

  a/sinA=b/sinB=c/sinC

  余弦定理:

  a^2=b^2+c^2-2bccosA

  b^2=a^2+c^2-2accosB

  c^2=a^2+b^2-2abcosC

  cosA=(b^2+c^2-a^2)/2bc

  cosB=(a^2+c^2-b^2)/2ac

  cosC=(a^2+b^2-c^2)/2ab

  tan(兀-a)=-tana

  sin(兀/2+a)=cosa

  sin(兀/2-a)=cosa

  cos(兀/2+a)=-sina

  cos(兀/2-a)=sina

  tan(兀/2+a)=-cota

  tan(兀/2-a)=cota

  (sina)^2+(cosa)^2=1

  sina/cosa=tana

  两角和与差的余弦公式

  cos(a-b)=cosa*cosb+sina*sinb

  cos(a-b)=cosa*cosb-sina*sinb

  两角和与差的正弦公式

  sin(a+b)=sina*cosb+cosa*sinb

  sin(a-b)=sina*cosb-cosa*sinb

  两角和与差的正切公式

  tan(a+b)=(tana+tanb)/(1-tana*tanb)

  tan(a-b)=(tana-tanb)/(1+tana*tanb)

2.高三年级数学必修二复习知识点

  1.不等式的定义

  在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

  2.比较两个实数的大小

  两个实数的大小是用实数的运算性质来定义的,

  有a-b>0⇔;a-b=0⇔;a-b<0⇔.

  另外,若b>0,则有>1⇔;=1⇔;<1⇔.

  概括为:作差法,作商法,中间量法等.

  3.不等式的性质

  (1)对称性:a>b⇔;

  (2)传递性:a>b,b>c⇔;

  (3)可加性:a>b⇔a+cb+c,a>b,c>d⇒a+cb+d;

  (4)可乘性:a>b,c>0⇒ac>bc;a>b>0,c>d>0⇒;

  (5)可乘方:a>b>0⇒(n∈N,n≥2);

  (6)可开方:a>b>0⇒(n∈N,n≥2).

3.高三年级数学必修二复习知识点


  1.满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。

  2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。

  3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C>0(或≥0),另一部分对应二元一次不等式Ax+By+C<0(或≤0)。

  4.已知平面区域,用不等式(组)表示它,其方法是:在所有直线外任取一点(如本题的原点(0,0)),将其坐标代入Ax+By+C,判断正负就可以确定相应不等式。

  5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,注意边界是实线还是虚线的含义。“线定界,点定域”。

  6.满足二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。所有整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。

  7.画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C>0所表示的平面区域时,应把边界画成虚线。

  8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。

  9.从实际问题中抽象出二元一次不等式(组)的步骤是:

  (1)根据题意,设出变量;

  (2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;

  (3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。

4.高三年级数学必修二复习知识点

  1、集合的概念

  集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。

  集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。

  2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。

  3、集合中元素的特性

  (1)确定性:设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。

  (2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。

  (3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。

  4、集合的分类

  集合科根据他含有的元素个数的多少分为两类:

  有限集:含有有限个元素的集合。如“方程3x+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。

  无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。

  特别的,我们把不含有任何元素的集合叫做空集,记错F,如{x?R|+1=0}。

  5、特定的集合的表示

  为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。

  (1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。

  (2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。

  (3)全体整数的集合通常简称为整数集Z。

  (4)全体有理数的集合通常简称为有理数集,记做Q。

  (5)全体实数的集合通常简称为实数集,记做R。

5.高三年级数学必修二复习知识点


  数列的定义

  按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.

  (1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.

  (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….。

  (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.

  (5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.

本文来源:https://www.wddqw.com/lFQh.html