高一数学必修三知识点梳理:高一数学下册必修三知识点复习

副标题:高一数学下册必修三知识点复习

时间:2024-07-15 03:11:01 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

【#高一# 导语】如果把高中三年去挑战高考看作一次越野长跑的话,那么高中二年级是这个长跑的中段。与起点相比,它少了许多的鼓励、期待,与终点相比,它少了许多的掌声、加油声。它是孤身奋斗的阶段,是一个耐力、意志、自控力比拚的阶段。但它同时是一个厚实庄重的阶段,这个时期形成的优势有实力。®文档大全网高二频道为你整理了《高一数学下册必修三知识点复习》,学习路上,®文档大全网为你加油!

  【一】

  两个平面的位置关系:

  (1)两个平面互相平行的定义:空间两平面没有公共点

  (2)两个平面的位置关系:

  两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

  a、平行

  两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

  两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

  b、相交

  二面角

  (1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

  (2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

  (3)二面角的棱:这一条直线叫做二面角的棱。

  (4)二面角的面:这两个半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

  两平面垂直

  两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

  两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

  两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

  Attention:

  二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)多面体

  棱柱

  棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

  棱柱的性质

  (1)侧棱都相等,侧面是平行四边形

  (2)两个底面与平行于底面的截面是全等的多边形

  (3)过不相邻的两条侧棱的截面(对角面)是平行四边形

  棱锥

  棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

  棱锥的性质:

  (1)侧棱交于一点。侧面都是三角形

  (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

  正棱锥

  正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

  正棱锥的性质:

  (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

  (3)多个特殊的直角三角形

  a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

  b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

  练习题:

  一个钝角与一个锐角的差是()

  A、锐角

  B、钝角

  C、直角

  D、不能确定

  下列说法正确的是()

  A、角的边越长,角越大

  B、在∠ABC一边的延长线上取一点D

  C、∠B=∠ABC+∠DBC

  D、以上都不对

  下列说法中正确的是()

  A、角是由两条射线组成的图形

  B、一条射线就是一个周角

  C、两条直线相交,只有一个交点

  D、如果线段AB=BC,那么B叫做线段AB的中点

  同一平面内互不重合的三条直线的交点的个数是()

  A、可能是0个,1个,2个

  B、可能是0个,2个,3个

  C、可能是0个,1个,2个或3个

  D、可能是1个可3个

  【二】

  (1)抽签法

  一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

  (抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体搅拌均匀就比较困难,用抽签法产生的样本代表性差的可能性很大)

  (2)随机数法

  随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

  分层抽样

  简介

  分层抽样(StratifiedRandomSampling)主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。

  定义

  一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样(stratifiedsampling)。

  整群抽样

  定义

  什么是整群抽样(Clustersampling)

  整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。

  应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。

  优缺点

  整群抽样的优点是实施方便、节省经费;

  整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。

  实施步骤

  先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:

  一、确定分群的标注

  二、总体(N)分成若干个互不重叠的部分,每个部分为一群。

  三、据各样本量,确定应该抽取的群数。

  四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。

  例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。

  与分层抽样的区别

  整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。

  分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;

  分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。

  系统抽样

  定义

  当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样(systematicsample)。

  步骤

  一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:

  (1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;

  (2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;

  (3)在第一段用简单随机抽样确定第一个个体编号l(l

  (4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。

  练习题:

  1、抽样推断的基本内容是:()

  A.参数估计

  B.假设检验

  C.参数估计和假设检验两方面

  D.数据的收集

  2、抽样平均误差的实质是()

  A.总体标准差

  B.抽样总体的标准差

  C.抽样总体方差

  D.样本平均数(成数〉的标准差

  3、不重复抽样平均误差:()

  A.总是大于重复抽样平均误差

  B.总是小于重复抽样平均误差

  C.总是等于重复抽样平均误差

  D.上情况都可能发生

  4、在其它条件不变的情况下,抽样单位数增加一半,抽样平差:()

  A.缩小为原来的81.6%

  B.缩小为原来的50%

  C.缩小为原来的25%

  D.扩大为原来的四倍

  5、样本的形成是:()

  A.随机的

  B.随意的

  C.非随机的

  D.确定的

  6、抽样误差之所以产生是由于:()

  A.破坏了随机抽样的原则。

  B.抽样总体的结构不足以代表总体的结构。

  C.破坏了抽样的系统。

  D.调查人员的素质。

高一数学下册必修三知识点复习.doc

本文来源:https://www.wddqw.com/oh85.html