【#小学奥数# 导语】成功根本没有秘诀可言,如果有的话,就有两个:第一个就是坚持到底,永不言弃;第二个就是当你想放弃的时候,回过头来看看第一个秘诀,坚持到底,永不言弃,学习也是一样需要多做练习。以下是®文档大全网为大家整理的《奥数计数问题之递推法例题讲解【三篇】》 供您查阅。
【第一篇】
例题: 平面上有10个圆,最多能把平面分成几部分?
分析与解答:
直接画出10个圆不是好办法,先考虑一些简单情况。
一个圆最多将平面分为2部分;
二个圆最多将平面分为4部分;
三个圆最多将平面分为8部分;
当第二个圆在第一个圆的基础上加上去时,第二个圆与第一个圆有2个交点,这两个交点将新加的圆弧分为2段,其中每一段圆弧都将所在平面的一分为二,所以所分平面部分的数在原有的2部分的基础上增添了2部分。因此,二个圆最多将平面分为2+2=4部分。
同样道理,三个圆最多分平面的部分数是二个圆分平面为4部分的基础上增加4部分。因此,三个圆最多将平面分为2+2+4=8部分。
由此不难推出:画第10个圆时,与前9个圆最多有9×2=18个交点,第10个圆的圆弧被分成18段,也就是增加了18个部分。因此,10个圆最多将平面分成的部分数为:
2+2+4+6+…+18
=2+2×(1+2+3+…+9)
=2+2×9×(9+1)÷2
=92
类似的分析,我们可以得到,n个圆最多将平面分成的部分数为:
2+2+4+6+…+2(n-1)
=2+2×[1+2+3+…+(n-1)]
=2+n(n-1)
=n2-n+2
【第二篇】
例题:有8块相同的巧克力糖,从今天开始每天至少吃一块,最多吃两块,吃完为止,共有多少种不同的吃法?
分析与解答:
【第三篇】
例题: 4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作为第一次传球,第五次传球后,球又回到甲手中,问有多少种传球方法?
分析与解答:
正在阅读:
奥数计数问题之递推法例题讲解【三篇】03-12
高一语文上册古诗文及文言文篇目07-08
2021贵州铜仁玉屏侗族自治县中医院招聘医护人员及驾驶员公告【20人】08-05
2021年内蒙古通辽市教育系统急需紧缺人才校园招聘面试通知09-08
2018上半年安徽中学教师资格证考试答案:综合素质04-21
唯美英文诗歌三篇10-11
杏花雨作文900字01-22