【#小学奥数# 导语】芬芳袭人花枝俏,喜气盈门捷报到。心花怒放看通知,梦想实现今日事,喜笑颜开忆往昔,勤学苦读最美丽。在学习中学会复习,在运用中培养能力,在总结中不断提高。以下是®文档大全网为大家整理的《小学奥数归纳法计数之归纳法练习及答案【五篇】》 供您查阅。
【第一篇】
对于比较复杂的问题,可以先观察其简单情况,归纳出其中带规律性的东西,然后再来解决较复杂的问题。
习题1:10个三角形最多将平面分成几个部分?
解:设n个三角形最多将平面分成an个部分。
n=1时,a1=2;
n=2时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有2×3=6(个)交点。这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即a2=2+2×3。
n=3时,第三个三角形与前面两个三角形最多有4×3=12(个)交点,从而平面也增加了12个部分,即:
a3=2+2×3+4×3。
……
一般地,第n个三角形与前面(n-1)个三角形最多有2(n-1)×3个交点,从而平面也增加2(n-1)×3个部分,故
an=2+2×3+4×3+…+2(n-1)×3
=2+[2+4+…+2(n-1)]×3
=2+3n(n-1)=3n2-3n+2。
特别地,当n=10时,a10=3×102+3×10+2=272,即10个三角形最多把平面分成272个部分。
【第二篇】
(一)选择题
在验证n=1成立时,左边所得的项为 [ ]
A.1 B.1+a
C.1+a+a2 D.1+a+a2+a3
2.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·…(2n-1)(n∈N)时,从"n=k→n=k+1"两边同乘以一个代数式,它是 [ ]
(二)填空题
1.用数学归纳法证明等式1+ 2+ 3+…+(2n+1)=(n+1)(2n+1)时,当n=1左边所得的项是______;从"k→k+1"需增添的项是______.
2.用数学归纳法证明当n∈N时1+2+22+23+…+25n-1是31的倍数时,当n=1时原式为______,从k→k+1时需增添的项是______.
答案:
(一)选择题 1.C 2.D
(二)填空题 1.1+2+3,(2k+2)+(2k+3);
2.1+2+22+23+24,25k+25k+1+25k+2+25k+3+25k+4.
【第三篇】
解答题
2.用数学归纳法证明:自然数m,n对任何的3≤m≤n均有差数列.
3.求证:当n为正奇数时7n+1能被8整除.自然数n,f(n)>n.
a3,a4,并推测出{an}的通项公式,用数学归纳法加以证明.
求a2,a3,a4,并推测an的表达式,用数学归纳法证明所得结论.
答案:
成立.时,多了一个顶点,该顶点与原k边形中的(k-2)个顶点可连成(k-2)条对角线,而原来的一条边也变成对角线,故(k+1)边形比k边形增多了(k-1)条对角线
说明 本题也可用排列组合的方法证明
4(a1-a2)(a2-a3)=(a1-a3)2
即 (a1+a3-2a2)2=0 ∴a1+a3=2a2 ∴命题成立;
②假设n=k(k≥3)时命题成立,即对于任何
a1,a2,…,an成等差数列
则当n=k+1时,由归纳假设a1,a2,…,ak成等差数列,设公差为d
令 ak+1-ak=m
去分母化简得 m2+d2-2dm=0
于是m=d 即ak+1-ak=d
∴a1,a2,a3,…,ak,ak+1成等差数列
故对任何n∈N命题成立.
3.(1)n=1时,71+1=8能被8整除;
(2)假设n=k(k为正奇数)时7k+1能被8整除(设7k+1=8M,M∈N)
则当n=k+1时
7k+2+1=72·7k+72-72+1=72(7k+1)-48
=49×8m-8×6=8(49M-6)
∵49M-6∈N ∴命题成立.
4.(1)当n=2时,
(2)假设n=k(k≥2)不等式成立
因此 f(k+1)> f(k)+1> k+1.
(2)假设n=k时,不等式成立
∴ n=k+1时不等式亦成立
由(1),(2)可知对一切n∈N不等式都成立.
证明(1)当n=1时,等式成立。
【第四篇】
1.满足1·2+2·3+3·4+…+n(n+1)=3n2-3n+2的自然数等于 ( )
A.1;B.1或2;C.1,2,3;D.1,2,3,4;
2.在数列{an}中, an=1-…则ak+1= ( )
A.ak+;B.ak+ C.ak+.D.ak+.
3.用数学归纳法证明"当n为正奇数时,xn+yn能被x+整除"的第二步是 ( )
A.假使n=2k+1时正确,再推n=2k+3正确; B假使n=2k-时正确,再推n=2k+1正确;
C. 假使n=k时正确,再推n=k+1正确;D假使n≤k(k≥1),再推n=k+2时正确(以上k∈Z)
答案:
1.C 用排除法,将4,3依次代入,所以选C.
2.D.
3.B 因为n为正奇数,据数学归纳法证题步骤,第二步应先假设第k个正奇数也成立,本题即假设n=2k-1正确,再推第k+1个正奇数即n=2k+1正确.
【第五篇】
1.在应用数学归纳法证明凸n边形的对角线为n(n-3)条时,第一步验证n等于 ( )
A.1. B.2; C.3; D.0;
2.已知Sn=则S1=________S2=_______S3=______
S4=________猜想Sn=__________.
3.用数学归纳法证明:1+2+3+…+n2=则n=k+1时左端在n=k时的左端加上_________
答案:
1.C. 因为是证明凸n边形,首先可先构成n边形,故选才.
2. 分别将1,2,3,4代入观察猜想
3.(k+1)2 n=k左端为1+2+3+…k2 n=k+1时左端为1+2+3+…k2+(k+1)2.