【#初中奥数# 导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥一些。下面是®文档大全网为大家带来的初三年级奥数试题及答案,欢迎大家阅读。
例1.已知:△ABC中,∠B=2∠C,AD是高
求证:DC=AB+BD
分析一:用分解法,把DC分成两部分,分别证与AB,BD相等。
可以高AD为轴作△ADB的对称三角形△ADE,再证EC=AE。
∵∠AEB=∠B=2∠C且∠AEB=∠C+∠EAC,∴∠EAC=∠C
辅助线是在DC上取DE=DB,连结AE。
分析二:用合成法,把AB,BD合成一线段,证它与DC相等。
仍然以高AD为轴,作出DC的对称线段DF。
为便于证明,辅助线用延长DB到F,使BF=AB,连结AF,则可得
∠ABD=2∠F=2∠C。
例2.已知:△ABC中,两条高AD和BE相交于H,两条边BC和AC的中垂线相交于O,垂足是M,N
求证:AH=2MO,BH=2NO
证明一:(加倍法――作出OM,ON的2倍)
连结并延长CO到G使OG=CO连结AG,BG
则BG∥OM,BG=2MO,AG∥ON,AG=2NO
∴四边形AGBH是平行四边形,
∴AH=BG=2MO,BH=AG=2NO
证明二:(折半法――作出AH,BH的一半)
分别取AH,BH的中点F,G连结FG,MN
则FG=MN=AB,FG∥MN∥AB
又∵OM∥AD,
∴∠OMN=∠HGF(两边分别平行的两锐角相等)
同理∠ONM=∠HFG∴△OMN≌△HFG……
例3.已知:在正方形ABCD中,点E在AB上且CE=AD+AE,F是AB的中点
求证:∠DCE=2∠BCF
分析:本题显然应着重考虑如何发挥CE=AD+AE条件的作用,如果只想用加倍法或折半法,则脱离题设的条件,难以见效。
我们可将AE(它的等量DG)加在正方形边CD的延长线上(如左图)也可以把正方形的边CD(它的等量AG)加在AE的延长线上(如右图)后一种想法更容易些。
辅助线如图,证明(略)自己完成
例4.已知:△ABC中,∠B和∠C的平分线相交于I,
求证:∠BIC=90+∠A
证明一:(由左到右)
∠BIC=180-(∠1+∠2)=180-(∠ABC+∠ACB)
=180-(∠ABC+∠ACB+∠A)+∠A
=90+∠A
证明二:(左边-右边=0)
∠BIC-(90+∠A)
=180-(∠ABC+∠ACB)-90-∠A
=90-(∠ABC+∠ACB+∠A)=……
证明三:(从已知的等式出发,进行恒等变形)
∵∠A+∠ABC+∠ACB=180∴∠A=180-(∠ABC+∠ACB)
∠A=90-(∠ABC+∠ACB)
90+∠A=180-(∠ABC+∠ACB),即∠BIC=90+∠A
初三年级奥数试题及答案.doc正在阅读:
初三年级奥数试题及答案05-26
幼儿园中秋节亲子活动方案策划活动内容_2018幼儿园中秋节亲子活动方案07-06
舌尖上的回忆作文700字09-03
六年级写人作文:雨打不摧,风吹不毁_写苏轼的作文600字12-28
山东2019年初级会计职称成绩查询入口【全国会计资格评价网】09-01
初一餐桌前的谈话600字05-30
2017年地下车位转让合同08-29
2017天津汉沽区小升初报名网址:www.zhaokao.net08-29