奥数最难数论题,小学奥数数论题:整数拆分问题

副标题:小学奥数数论题:整数拆分问题

时间:2023-06-24 02:51:02 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。


有一些自然数,它可以表示为9个连续自然数之和,又可以表示为10个连续自然数之和,还可以表示为11个连续自然数之和,求满足上述条件的最小自然数。
分析:设满足要求的最小自然数为11,由9个连续自然数的和是中间的数(第5个数)的9倍知,n是9的倍数;
同理,n是11的倍数;
又10个连续自然数a1,a2,…,a10的和为:
(a1+a10)×10÷2=5(a1+a10)
是5的倍数,所以n是5的倍数;
而9,11,5两两互质,所以n是5×9×11=495的倍数,由n的最小性取n=495,事实上,有:
495=51+52+53+…+59(9个连续自然数之和)
=45+46+47+…+54(10个连续自然数之和)
=40+41+42+…+50(11个连续自然数之和)
从而知,满足条件的最小自然数是495。

小学奥数数论题:整数拆分问题.doc

本文来源:https://www.wddqw.com/HMen.html