方程x的平方

时间:2022-04-20 05:30:03 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
方程x的平方-x+a=0两根之和为1x的平方-x+b=0两根之和亦为1 而四个根可组成首项为1/4等差数列,故设四根为x1,x2,x3,x4x1+x4=x2+x3=1 x4=3/4,那么d=(3/4-1/4)/3=1/6,x2=5/12,x3=7/12 a=x1x4=3/16,b=x2x3=35/144 a+b=3/16+35/144=31/72

(x-1)Sn=xSn-Sn

=x+3x^2+5x^3+......+(2n-1)x^n-(1+3x+5x的平方+……+2n-1)xn-1次方) =(2n-1)x^n-1-2(x+x^2+x^3+...+x^n-1) =(2n-1)x^n-x(1-x^n)/(1-x)-1

Sn=(2n-1)x^n/(1-x)-(x-x^(n+1))/(1-x)^2-1/(1-x) 三个数是a/q,a,aq (a/q)*a*aq=27 a=3

(a/q)^2+a^2+a^2q^2=91 9/q^2+9+9q^2=91 9q^4-82q^2+9=0 (9q^2-1)(q^2-9)=0 q^2=1/9,q^2=9 q=±1/3,q=±3

所以这三个数是 1,3,9 -1,3,-9 9,3,1 -9,3,-1

(x-1)Sn=xSn-Sn

=x+3x^2+5x^3+......+(2n-1)x^n-(1+3x+5x+……+2n-1)xn-1) =(2n-1)x^n-1-2(x+x^2+x^3+...+x^n-1) =(2n-1)x^n-x(1-x^n)/(1-x)-1 Sn=(2n-1)x^n/(1-x)-(x-x^(n+1))/(1-x)^2-1/(1-x)

(Ⅰ)令n=12,代入所给的式子求得a1a2,当n≥2时再令n=n-1得到2an-1-1=Sn-1,两个式子相减得an=2an-1,判断出此数列为等比数列,进而求出通项公式;

(Ⅱ)由(Ⅰ)求出nan=n•2n-1,再由错位相减法求出此数列的前n项和. 解答:解:(Ⅰ)令n=1,得2a1-a1=a12,即a1a12 ∵a1≠0,∴a1=1

n=2,得2a2-1=1•(1+a2),解得a2=2 n≥2时,由2an-1=Sn得,2an-1-1=Sn-1


两式相减得2an-2an-1=an,即an=2an-1

∴数列{an}是首项为1,公比为2的等比数列, ∴an=2n-1,即数列{an}的通项公式an=2n-1

(Ⅱ)由(Ⅰ)知,nan=n•2n-1,设数列{nan}的前n项和为Tn Tn=1+2×2+3×22+…+n×2n-1,① 2Tn=1×2+2×22+3×23+…+n×2n,② -②得,-Tn=1+2+22+…+2n-1-n•2n =2n-1-n•2n

∴Tn=1+n-12n

点评:本题考查了数列anSn之间的转化,以及由错位相减法求出数列的前项和的应用.

n答题:gongjy老师


本文来源:https://www.wddqw.com/doc/03426dbfde88d0d233d4b14e852458fb770b3885.html