6.1 平行四边形的性质 第1课时 平行四边形边和角的性质 个四边形是平行四边形的重要方法. 探究点二:平行四边形的边、角特征 【类型一】 利用平行四边形的性质求边长 如图,在△ABC中,AB=AC=5,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形,DE=2,则AD=________. 1.理解平行四边形的概念;(重点) 2.掌握平行四边形边、角的性质;(重点) 3.利用平行四边形边、角的性质解决问题.(难点) 一、情境导入 平行四边形是我们常见的一种图形,它具有十分和谐的对称美.它是什么样的对称图形呢?它又具有哪些基本性质呢? 解析:∵四边形ADEF为平行四边形,∴AF=DE=2,AD=EF,AD∥EF,∴∠ACB=∠FEB.∵AB=AC,∴∠ACB=∠B,∴∠FEB=∠B,∴EF=BF,∴AD=BF.∵AB=5,∴BF=5+2=7,∴AD=7. 方法总结:本题考查了平行四边形对边平行且相等的性质,平行线的性质,等腰三角形的性质,熟练掌握各性质是解题的关键. 【类型二】 利用平行四边形的性质求角度 二、合作探究 探究点一:平行四边形的定义 如图,在四边形ABCD中,∠B=∠D,∠1=∠2.求证:四边形ABCD是平行四边形. 解析:根据三角形内角和定理求出∠DAC=∠ACB,根据平行线的判定推出AD∥BC,AB∥CD,根据平行四边形的定义推出即可. 证明:∵∠1+∠B+∠ACB=180°,∠2+∠D+∠CAD=180°,∠B=∠D,∠1=∠2,∴∠DAC=∠ACB,∴AD∥BC.∵∠1=∠2,∴AB∥CD,∴四边形ABCD是平行四边形. 方法总结:平行四边形的定义是判断一 第 1 页 共 2 页 如图,平行四边形ABCD中,CE⊥AB于E,若∠A=125°,则∠BCE的度数为( ) A.35° B.55° C.25° D.30° 分析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.∵∠A=125°,∴∠B=55°.∵CE⊥AB于E,∴∠BEC=90°,∴∠BCE=90°-55°=35°. 故选A. 方法总结:平行四边形对角相等,所以利用该性质可以解决和角度有关的问题. 【类型三】 利用平行四边形的性质证明有关结论 位置关系,可得出DM、CM分别是∠ADC与∠BCD的角平分线,又由平行线的性质可得∠ADC+∠BCD=180°,进而可得出DM与MC的位置关系. 解:DM与MC互相垂直.证明如下:∵M是AB的中点,∴AB=2AM.又∵AB=2AD,∴AM=AD,∴∠ADM=∠AMD.∵四边形ABCD为平行四边形,∴AB∥CD,∴∠AMD=∠MDC,∴∠ADM=∠MDC,即11∠MDC=∠ADC,同理∠MCD=∠BCD.22∵四边形ABCD为平行四边形,∴AD∥BC,11∴∠MDC+∠MCD=∠BCD+∠ADC=2290°,∴∠DMC=90°,∴DM与MC互相垂直. 方法总结:应熟练掌握平行四边形的性质,并能求解一些简单的计算、证明等问题. 三、板书设计 1.平行四边形的定义 两组对边分别平行的四边形叫做平行四边形. 2.平行四边形的边和角的性质 平行四边形的对边相等,平行四边形的对角相等. 学生通过动手操作的过程和观看多媒体课件的演示,得出并掌握平行四边形性质,效果比较好.例题能够引导学生用不同的方法去解决问题并加以变式,能根据学生的具体情况在练习的过程中及时发现问题,并通过投影指出错误,规范说理过程,极大提高课堂效率. 如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.求证:FP=EP. 解析:根据平行四边形的性质推出∠DGC=∠GCB,根据等腰三角形性质求出∠DGC=∠DCG,推出∠DCG=∠GCB,根据等角的补角相等求出∠DCP=∠FCP,根据SAS证出△PCF≌△PCE即可. 证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DGC=∠GCB.∵DG=DC,∴∠DGC=∠DCG,∴∠DCG=∠GCB.∵∠DCG+∠ECP=180°,∠GCB+∠FCP=180°,∴∠ECP=∠FCP.∵在CE=CF,△PCF和△PCE中,∠FCP=∠ECP,∴CP=CP,△PCF≌△PCE(SAS),∴PF=PE. 方法总结:本题的综合性比较强,考查了平行四边形的性质,等腰三角形的性质,全等三角形的性质和判定等,利用平行四边形的性质可以解决一些相等的问题. 【类型四】 判断直线的位置关系 如图,在平行四边形ABCD中,AB=2AD,M为AB的中点,如图连接DM、MC,试问直线DM和MC有何位置关系?请证明. 解析:由AB=2AD,M是AB的中点的 第 2 页 共 2 页 本文来源:https://www.wddqw.com/doc/158d8723f76527d3240c844769eae009581ba2e9.html