正反比例的练习教学反思 昨天学习反比例的意义时,完成练习反馈情况还不错。可今天教学完对比练习课后明显感觉正、反比例的判断问题严重,作业正确率明显下降。 虽然,学生能够正确背诵正、反比例的意义和关系式,并且也能对比发现它们之间的异同点,但在实际应用中却困难重重。总结学生的作业错误,发现主要存在以下五方面的问题: 1、因理解题意能力不够,影响判断。 如“订阅《中国少年报》的份数和钱数”。有的学生是不理解题目中的“钱数”到底是单价,还是购买报纸所对应的总钱数。有的学生是因为没看到题目中明确注明什么量一定,所以直接判定此题不成比例。其实联系生活实际思考,订阅报纸的单价应该是一定的,这是常识,不必在题目中再次注明。 【改进办法】加强对语言文字理解能力的训练,要求学生能够联系生活实际自主挖掘出题目中的隐含一定量。如: (1)小明从家到学校,行走的速度和所用的时间。(路程一定) (2)一本书,每在看的页数和所需天数。(书的总页数一定) (3)将一根木棍截成一样长的小段,每段的长和段数。(小棒的总长度一定) 2、因数量关系不明确,影响判断。 如“车轮的直径一定,行驶的路程和转数。”许多学生认为由行驶的路程无论是乘或除转数都无法等于车轮的直径,所以判断不成比例。但如果他们具有较强分析数量关系的能力,是不难从中发现行驶的路程÷转数=车轮的周长。而圆的周长C=πd,既然“车轮的直径一定”,而圆周率π也是一个固定不变的数,那么“πd”也应该是一定的,所以此题应该成正比例。 【改进办法】借此之机,弥补并夯实学困生较薄弱的数量关系。可以在课前利用填空的形式,培养学生的分析思维能力。如: (1)耗油总量÷耗没时间=() (2)每块砖的面积×铺砖的块数=() (3)一个班的男生人数+女生人数=() 3、因公式变形不熟练,影响判断。 这类问题是困扰学生的难点。如“圆的面积和半径”。许多学生根据正比例的变化规律来思考,半径扩大,面积也随着扩大;半径缩小,面积也随着缩小,所以判断这两个相关联的量是正比例。可如果根据圆的面积公式S=πrr变形,得S:r=πr,π一定,但圆的半径却不一定,所以此题比值不一定,应该不成比例。 【改进办法】教给学生解答这类问题的方法:遇到这类需要利用周长、面积或体积公式来推导的题目,请学生先在草稿本上默写出相关公式,然后根据问题利用等式的性质,将相关联的两个量移到等号的左边,将其它的量移到等号的右边,再根据变形后的公式进行判断。同时,要加大对此类题目的指导力度。如: (1)三角形的面积一定,它的底和高。 (2)正方形的边长和它的面积(或周长)。 (3)长方形的周长(或面积)一定,长和宽。 4、因分数应用题掌握不扎实,影响判断。 分数应用题一直是六年级教学中的难点,许多学生至今仍有许多知识点存在缺陷。如“报考人数一定,录取率与录取人数”,学生能够回答出录取率的含义表示录取人数占报考人数的百分之几,但已知录取率和录取人数,如何求报考人数,到底是用乘法还是除法,对他们而言则一头雾水。 【改进办法】两种策略:或者以此为契机,及时弥补分数应用题教学中的知识缺陷。或者借助等式的基本性质,在学生原有认知基础上引导他们对录取率的公式变形。 本文来源:https://www.wddqw.com/doc/169f4f6626284b73f242336c1eb91a37f1113280.html