有关数列求和公式方法总结

时间:2023-12-24 02:04:15 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
数列求和公式方法总结

有关数列求和公式方法总结

总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料。以下是小编精心整理的数列求和公式方法总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

一、分组转化求和法

若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列构成,则求这个数列的前n项和Sn时可以用分组求和法求解。一般步骤是:拆裂通项――重新分组――求和合并。

1Sn=1×4+2×7+3×10+…+n(3n+1)的和 解由和式可知,式中第n项为an=n3n+1=3n2+n ∴Sn=1×4+2×7+3×10+…+n(3n+1

=(3×12+1)+(3×22+2)+(3×32+3)+…+(3n2+n =3(12+22+32+…+n2)+(1+2+3+…+n) =3×16n(n+1)(2n+1+nn+12 =nn+12 二、奇偶分析求和法

求一个数列的前n项和Sn,如果需要对n进行奇偶性讨论或将奇数项、偶数项分组求和再求解,这种方法称为奇偶分析法。

2:求和:Sn=-1+3-5+7-9+11-…+(-1n2n-1 分析:观察数列的通项公式an=-1n2n-1)可知Sn与数列项数n的奇偶性有关,故利用奇偶分析法及分组求和法求解,也可以在奇偶分析法的基础上利用并项求和法求的结果。

解:当n为偶数时,

Sn=-1+3-5+7-9+11-…+(-1n2n-1 =-(1+5+9+…+2n-3+(3+7+11+…+2n-1 =-n21+2n-32+n23+2n-12


=-n2-n2+n2+n2=n n为奇数时,

Sn=-1+3-5+7-9+11-…+(-1n2n-1 =-(1+5+9+…+2n-3+(3+7+11+…+2n-1 =-n+121+2n-12+n-123+2n-32 =-n2+n2+n2-n2=-n 综上所述,Sn=-1nn 三、并项求和法

一个数列an的前n项和Sn中,某些项合在一起就具有特殊的`质,因此可以几项结合求和,再求Sn,称之为并项求和法。形如an=-1nfn)的类型,就可以采用相邻两项合并求解。如例3中可用并项求和法求解。

3:求S=-12+22-32+42--992+1002

S=-12+22+-32+42)+…+(-992+1002 =1+2+3+4)+…+(99+100=5050 四、基本公式法

如果一个数列是符合以下某种形式,如等差、等比数列或通项为自然数的平方、立方的,那么可以直接利用以下数列求和的公式求和。

常用公式有

1)等差数列求和公式:Sn=na1+nn-12d=na1+an2 2)等比数列求和公式:Sn=na1a11-qn1-q=a1-anq1-qq=1)(q≠1)

3)1+2+3+…+n=n(n+12 4)1+3+5+…+2n-1=n2 5)2+4+6+…+2n=n(n+1

6)12+22+32+…+n2=16n(n+1)(2n+1 7)13+23+33+…+n3=14n2(n+12

1:已知等比数列an的通项公式是an=12n-1,设Sn是数列an的前n项和,求Sn

解:∵an=12n-1∴a1=1,q=12


本文来源:https://www.wddqw.com/doc/1c656749be64783e0912a21614791711cd797976.html