高中数学竞赛初赛试题

时间:2022-06-26 21:23:16 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
资料收集于网络,如有侵权 请联系网站删除

2018年高中数学竞赛初赛

一、填空题(每题7分,共10题,共70分)

1. 函数y=cos x-cos 2xxR)的值域

2. 已知(a+bi2=3+4i,其中a,bRi是虚数单位,则a2+b2=

3. 圆心在抛物线x2=2y上,并且和该抛物线的准线及y轴都相切的圆的方程

1-4x

4. 设函数fx=x-x,则不等式f1-x2+f5x-7<0的解集为

2

5. 已知等差数列{an}的前12项的和为60,则a1a2a3+...+a12的最小值 6. 已知正四面体内切球的半径是1,则该四面体的体积为 7. 在△ABC中,AB=5,AC=4,且

=12,设P为平面ABC上一点,则

的最

小值为

8. gn=

(k,n),其中nN,(k,n)表示kn的最大公约数,则g100)的值

*

k1

n



9. 1,2,3,4,5,6,7,8,9,这九个数随机填入3×3的方格表中,每个小方格填一个数,且所填各部相同,则使每行,每列所填数之和都是奇数的概率是

(第9题图)

10. 1,2,3,4...1000中,能写出a2-b2+1a,bN的形式,且不能被3整除的数有

二、解答题(每题20分,共4题,共80分)

11. 如图,在平面直角坐标系xoy中,已知圆O 的方程为x2+y2=4,P0,1)点的直线lO交于A,B,与x轴交于Q,设



,求证:为定值.

y

A P Q

O x B



(第11题图) 12. 已知{an} 是公差为d的等差数列,且a1+t2=a2+t3=a3+t. (1). 求实数t,d的值; 只供学习与交流


资料收集于网络,如有侵权 请联系网站删除

(2). 若正整数满足mpram-2m=ap-2tp=ar -2tr=0,求数组(mpr)和相应的通项公式an



13.

14. 如图,在圆内接四边形ABCD中,对角线ACBD交于P,△ABD与△ABC的内心分别I1I2,直线I1I2分别与AC,BD交于M,N,求证:PM=PN.

C D

P



I1 I2 N M



A B

(第13题图)

15. 1,2,3,4.......20502050个数中任取2018个组成集合A,把A中的每个染上红色或蓝色.求证:总存在一种染色方法使得每600个红数及600个蓝数满足下列两个条件: 只供学习与交流


资料收集于网络,如有侵权 请联系网站删除

600个红数的和等于这600个蓝数的和;

600个红数的平方和等于这600个蓝数的平方和.





只供学习与交流


本文来源:https://www.wddqw.com/doc/2f1fa09a657d27284b73f242336c1eb91b373318.html