高考数学如何上140分方法及模板有哪些 做数学题顺序最好先易后难 原则上做数学题顺序按试题排列顺序即可,以免漏题。不过,在此原则下,还应灵活掌握。由于考试时间很紧,所以应把时间放在得分效益最大的地方,即所谓"好钢用在刀刃上"。这里的"刀刃"并不是指个别的难道,而是大量的普通题。 因为普通题所花时间与所得分数之比是最大的。做完有充分把握得分的容易题,才能做难题,做了难题丢了容易题的做法是很愚蠢的。 另外,先把容易的题目做出来,能使紧张的心情逐渐平静,这时再去想难题,会比较从容。如果一开始就去做自己不熟悉的难题,越做不出来心态越坏,时间也花得多,甚至导致本能做出的其它题也没时间去做了。 会做的题一定要保证做对 答题时,我们的目的就是要努力使自己的位置名次靠前,因此,我们必须首先保住现有位置,再进一步努力靠前。这时,最大的竞争对手就是同一水平的考生。所以在答题时,与你同一水平的考生能做对的题目也就是你能做对的题目一定要做对。 否则,你就需要用比较难一点的题目弥补这一损失,这个代价是比较大的。这就要求注意力高度集中,调动出脑海里的点点滴滴。 做到这点不容易,要靠平时的锻炼。我平常做题、考试都严格要求自己,会做的一定做对。这在高考数学中帮助很大。因为高考数学时我会做的题都做对了,分数才得以较高。 1、三角函数题 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。 2、数列题 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。 3、立体几何题 1.证明线面位置关系,一般不需要去建系,更简单; 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 4、概率问题 1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数; 2.搞清是什么概率模型,套用哪个公式; 3.记准均值、方差、标准差公式; 4.求概率时,正难则反(根据p1+p2+...+pn=1; 5.注意计数时利用列举、树图等基本方法; 6.注意放回抽样,不放回抽样; 7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透; 8.注意条件概率公式; 9.注意平均分组、不完全平均分组问题。 5、圆锥曲线问题 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法; 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等; 3.战术上整体思路要保7分,争9分,想12分。 6、导数、极值、最值、不等式恒成立(或逆用求参)问题 1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 2.注意最后一问有应用前面结论的意识; 3.注意分论讨论的思想; 4.不等式问题有构造函数的意识; 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法); 6.整体思路上保6分,争10分,想12分。 高三快速提高数学成绩的方法首先一个是多做题,哪个专题知识点不会就做哪方面的题,直到把类型题都做会了为止。光做题也不是解决问题的最佳办法,要想学好数学,还必须学会用数学思维去思考问题,只有入门了才能真正学好数学。 数学成绩提高也是分档次的,数学要想及格容易,但考高分是比较难的,尤其是考140多分甚至是满分更难。考高分,基础题必须不丢分,难题争取得步骤分。选择题最后2道和大题最后2道算是比较难的,其余题目尽量都得分。 学数学最佳方法就是多写写、画画、算算,也就是看题目给什么条件就画什么图或是推导出一个无知条件,因为每个条件都不是白给的,都是有价值的,所以不要小看每个条件甚至是每个字。 感谢您的阅读,祝您生活愉快。 本文来源:https://www.wddqw.com/doc/32194226571810a6f524ccbff121dd36a32dc4b2.html