19.1.2 平行四边形的判定(三) 教学目标 知识与技能 过程与方法 情感态度与价值观 1. 理解三角形中位线的概念,掌握它的性质. 2. 能较熟练地应用三角形中位线性质进行有关的证明和计算. 经历探索、猜想、证明的过程,进一步发展推理论证的能力.感悟几何学的推理方法。 培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值。 重点 难点 掌握和运用三角形中位线的性质. 三角形中位线性质的证明(辅助线的添加方法) 教 学 过 程 备 注 教学设计 与 师生互动 第一步:课堂引入 1. 平行四边形的性质;平行四边形的判定;它们之间有什么联系? 2. 你能说说平行四边形性质与判定的用途吗? (答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.) 实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图) 图中有几个平行四边形?你是如何判断的? 第二步: 引入新课 例(教材P98例4) 如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=1BC. 2 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形. 方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=11DF,所以DE∥BC且DE=BC. 22(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同) 方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE=11DF,所以DE∥BC且DE=BC. 22三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线 【思考】: (1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别? (2)三角形的中位线与第三边有怎样的关系? (答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线. (2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.) 三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半. 〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由) 第三步:应用举例 例1已知:如图(1),在四边形ABCD中,E、F、G、H分别是 AB、BC、CD、DA的中点. 求证:四边形EFGH是平行四边形. 分析:因为已知点E、F、G、H分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC或BD,构造“三角形中位线”的基本图形后,此题便可得证. 证明:连结AC(图(2)),△DAG中, ∵ AH=HD,CG=GD, ∴ HG∥AC,HG=1AC(三角形中位线性质). 21同理EF∥AC,EF=AC. 2∴ HG∥EF,且HG=EF. ∴ 四边形EFGH是平行四边形. 此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形. 第四步:课堂练习 1.如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是 m,理由是 . 2.已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长. 3.如图,△ABC中,D、E、F分别是AB、AC、BC的中点, (1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm; (2)中线AF与DE中位线有什么特殊的关系?证明你的猜想. 第五步:课后巩固 1.(填空)一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是 cm. 2.(填空)已知:△ABC中,点D、E、F分别是△ABC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是 cm. 3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形. 课后小结与反思 : 本文来源:https://www.wddqw.com/doc/35487c1becf9aef8941ea76e58fafab069dc44cd.html