勾股定理手抄报

时间:2023-03-02 16:07:24 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。


勾股定理手抄报

勾股定律(Pythagorean Theorem)又称勾股弦定理、勾股定理,是一个基本的几何定理,指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,故称之为勾股定理。

《九章算术》中,赵爽描述此图:“勾股各自乘,并之为玄实。开方除之,即玄。案玄图有可以勾股相乘为朱实二,倍之为朱实四。以勾股之差自相乘为中黄实。加差实亦成玄实。以差实减玄实,半其余。以差为从法,开方除之,复得勾矣。加差于勾即股。凡并勾股之实,即成玄实。或矩于内,或方于外。形诡而量均,体殊而数齐。勾实之矩以股玄差为广,股玄并为袤。而股实方其里。减矩勾之实于玄实,开其余即股。倍股在两边为从法,开矩勾之角即股玄差。加股为玄。以差除勾实得股玄并。以并除勾实亦得股玄差。令并自乘与勾实为实。倍并为法。所得亦玄。勾实减并自乘,如法为股。股实之矩以勾玄差为广,勾玄并为袤。而勾实方其里,减矩股之实于玄实,开其余即勾。倍勾在两边为从法,开矩股之角,即勾玄差。加勾为玄。以差除股实得勾玄并。以并除股实亦得勾玄差。令并自乘与股实为实。倍并为法。所得亦玄。股实减并自乘如法为勾,两差相乘倍而开之,所得以股玄差增之为勾。以勾玄差增之为股。两差增之为玄。倍玄实列勾股差实,






见并实者,以图考之,倍玄实满外大方而多黄实。黄实之多,即勾股差实。以差实减之,开其余,得外大方。大方之面,即勾股并也。令并自乘,倍玄实乃减之,开其余,得中黄方。黄方之面,即勾股差。以差减并而半之为勾。加差于并而半之为股。其倍玄为广袤合。令勾股见者自乘为其实。四实以减之,开其余,所得为差。以差减合半其余为广。减广于玄即所求也。




本文来源:https://www.wddqw.com/doc/45a051e47dd5360cba1aa8114431b90d6c8589c6.html