人教版初中七年级数学上册《绝对值》重点知识总结 【学法点津】 用数形结合法,在数轴上探索绝对值概念产生的过程。由特殊数的绝对值推导出任意有理数a的绝对值。利用分类讨论法概括出绝对值a的三种可能。用熟悉的温度计类比数轴,观察到数轴上有理数的大小排列规律,并结合绝对值探索出负数与负数比较大小的简便方法。解题当中应该把数轴、相反数、绝对值的知识点有机地结合起来,使各个知识点相互接应。 【学点归纳总结】 一、知识要点总结 1、一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。一个正数的绝对值等于它本身;一个负数的绝对值等于它的相反数; 0的绝对值是0 。 (1)当a是正数时,︱a︱= a ; (2)当a是负数时,︱a︱ = -a ; (3)当 a=0时,︱a︱ = 0 ; 求解一个数的绝对值时应先判断这个数是正数、0、还是负数,然后相应地根据上面的结论来推导。 2、由在数轴上左边的数小于右边的数,推导出(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。两数比较大小,应先化简,再判断化简后的两数是正数、0、还是负数,然后相应地根据上面的结论推导。特别地,当两个负数比较大小时应先求出它们的绝对值。 二、规律方法总结 1、绝对值概念,可以利用数形结合的方法在数轴上探索得出。 2、求解任意有理数a的绝对值,利用分类讨论法,归纳、总结出三种可能。 3、推导两数的大小规律,把数轴和温度计进行对比,可以利用类比法。 三、易错问题误区点拨 【典例1】绝对值等于4的数是______. 【错解分析】4。误以为题目是求4的绝对值。 【正解分析】4和-4。从“形”上理解,就是求到原点距离是4的点,应该在原点两边各有一点,分别是4和-4表示的点;从“数”上理解,4和-4的绝对值都是4。 2 / 2 【典例2】写出绝对值不大于2的整数 【错解分析】0,1,2。没意识到负整数取绝对值就是正整数了。 【正解分析】-1,-2,0,1,2。绝对值问题要分类来考虑,注意负数的绝对值是它的相反数。 【学习资料链接】 关于绝对值的争议 如果把向南走1公里记为+1,把向北走1公里记为-1,对于向北走,-1求绝对值等于1,结果就成了向南走了1公里。显然这里是有问题的。问题在于无论是正数还是负数都是相对数,不是绝对数,所以相对数求绝对值后得到的应是无符号的数,而不是正数。所以,无符号的数不只是一个零,应该还有其他的无符号数!所以有,|-1|=|+1|=1,这里1不是正数,而是与0一样的无符号数! 如果把向零上的10度记为+10,把零下5度记为-5,问:一共上下差多少度,计算方法是两个数的绝对值相加,也就是15度。如果问温度和是多少度,计算方法就是相对数相加,是+5。 如果题中没有说什么是正,如:邮递员送信先向南10米,再向北5米,做题前必须写:记什么为正,一般不用写另一个,因为不是正就是负,知道一个就行了。 所以对于绝对值的概念也是有争议的。有人并不认为绝对值就一定是正数。这说明数学也是在不断发展之中的。而我们见到的数学只是历史过程中的一个阶段之一,没有影响到正常的学习。 2 / 2 本文来源:https://www.wddqw.com/doc/4ccf5ad831687e21af45b307e87101f69f31fb71.html