spss结果中,F值,t值及其显著性(sig)的解释

时间:2023-04-11 03:49:13 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。


spss结果中,F值,t值及其显著性(sig)的解释

spss处理完数据的显示结果中,F值,t值及其显著性(sig都分别是解释什么的?

一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。

通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。

F值和t值就是这些统计检定值,与它们相对应的概率分布,就F分布和t分布。统计显著性(sig)就是出现目前样本这结果的机率。

至於具体要检定的内容,须看你是在做哪一个统计程序。




举一个例子,

比如,你要检验两独立样本均数差异是否能推论至总体,而行的t验。

两样本(如某班男生和女生)某变量(如身高)的均数并不相同, 但这差别是否能推论至总体,代表总体的情况也是存在著差异呢? 会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这2样本的数值不同?

为此,我们进行t检定,算出一个t检定值,

与统计学家建立的以「总体中没差别」作基础的随机变量t分布进行比较,

看看在多少%的机会(亦即显著性sig)下会得到目前的结果。 若显著性sig值很少,比如<0.05(少於5%机率) 亦即是说,「如果」总体「真的」没有差别,那麼就

只有在机会很少(5%)很罕有的情况下,才会出现目前这样本的情况。

虽然还是有5%机会出错,但我们还是可以「比较有信心」的说: 目前样本中这情况(男女生出现差异的情况)不是巧合,是具统计学意义的,

「总体中男女生不存差异」的虚无假设应予拒绝,简言之,总体应该存在著差异。


本文来源:https://www.wddqw.com/doc/5eb3d755158884868762caaedd3383c4bb4cb486.html