你的分析结果有T值,有sig值,说明你是在进行平均值的比较。也就是你在比较两组数据之间的平均值有没有差异。 从具有t值来看,你是在进行T检验。T检验是平均值的比较方法。 T检验分为三种方法: 1. 单一样本t检验(One-sample t test) 是用来比较一组数据的平均值和一个数值有无差异。例如,你选取了5个人,测定了他们的身高,要看这五个人的身高平均值是否高于、低于还是等于1.70m,就需要用这个检验方法。 2. 配对样本t检验(paired-samples t test) 是用来看一组样本在处理前后的平均值有无差异。比如,你选取了5个人,分别在饭前和饭后测量了他们的体重,想检测吃饭对他们的体重有无影响,就需要用这个t检验。 注意,配对样本t检验要求严格配对,也就是说,每一个人的饭前体重和饭后体重构成一对。 3. 独立样本t检验(independent t test) 是用来看两组数据的平均值有无差异。比如,你选取了5男5女,想看男女之间身高有无差异,这样,男的一组,女的一组,这两个组之间的身高平均值的大小比较可用这种方法。 总之,选取哪种t检验方法是由你的数据特点和你的结果要求来决定的。 t检验会计算出一个统计量来,这个统计量就是t值, spss根据这个t值来计算sig值。因此,你可以认为t值是一个中间过程产生的数据,不必理他,你只需要看sig值就可以了。sig值是一个最终值,也是t检验的最重要的值。 sig值的意思就是显著性(significance),它的意思是说,平均值是在百分之几的几率上相等的。 一般将这个sig值与0.05相比较,如果它大于0.05,说明平均值在大于5%的几率上是相等的,而在小于95%的几率上不相等。我们认为平均值相等的几率还是比较大的,说明差异是不显著的,从而认为两组数据之间平均值是相等的。 如果它小于0.05,说明平均值在小于5%的几率上是相等的,而在大于95%的几率上不相等。我们认为平均值相等的几率还是比较小的,说明差异是显著的,从而认为两组数据之间平均值是不相等的。 表中的F检验就是方差齐性检验,它的Sig值为0.066,在0.05水平下不能拒绝原假设。也就是说,可以认为方差是齐的。这样就看表中的第一行后面的Sig值。由于后面的T检验的Sig值为0.025,小于0.05的显著性水平。因此在0.05水平下拒绝原假设。 如果表中的F检验得结果是方差不齐,则应看下面一行的后面的Sig值。不过,这种情况建议你采用非参数检验方法。 配对样本T检验看最后一个表的sig值 本文来源:https://www.wddqw.com/doc/728f604ecf84b9d528ea7a98.html