三角形余弦定理公式及证明

时间:2024-02-07 06:28:17 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
三角形余弦定理公式及证明

余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。是勾股定理在一般三角形情形下的推广。 扩展资料

三角形余弦定理的公式:

对于边长为abc而相应角为ABC的三角形,有: a2=b2+c2-bc·cosA b2=a2+c2-ac·cosB c2=a2+b2-ab·cosC 也可表示为: cosC=(a2+b2-c2)/ab cosB=(a2+c2-b2)/ac cosA=(c2+b2-a2)/bc

这个定理也可以通过把三角形分为两个直角三角形来证明。 如果这个角不是两条边的夹角,那么三角形可能不是唯一的`(--)。要小心余弦定理的这种歧义情况。

三角形余弦定理的证明:

(a·b=|a||b|Cosθ本来还是由余弦定理得出来的,怎么又能反过来证明余弦定理)∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)

∴c·c=(a+b)·(a+b)

∴c2=a·a+2a·b+b·b∴c2=a2+b2+2|a||b|Cos(π-θ) (以上粗体字符表示向量) 又∵Cos(π-θ)=-Cosθ

∴c2=a2+b2-2|a||b|Cosθ(注意:这里用到了三角函数公式) 再拆开,得c2=a2+b2-2abcosC cosC=(a2+b2-c2)/2*a*b

同理可证其他,而下面的cosC=(c2-b2-a2)/2ab就是将cosC


到左边表示一下。

平面几何证法 在任意△ABC AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*cAD=sinB*cDC=BC-BD=a-cosB*c 根据勾股定理可得: AC2=AD2+DC2 b2=(sinBc)2+(a-cosBc)2

b2=(sinB*c)2+a2-2accosB+(cosB)2c2 b2=(sinB2+cosB2)c2-2accosB+a2 b2=c2+a2-2accosB cosB=(c2+a2-b2)/2ac


本文来源:https://www.wddqw.com/doc/856a5cf87c192279168884868762caaedd33bac2.html