1.1.2 余弦定理 余弦定理定义及公式 余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。是勾股定理在一般三角形情形下的推广。 a²=b²+c²-2bccosA 余弦定理证明 如上图所示,△ABC,在c上做高,根据射影定理,可得到: 将等式同乘以c得到: 运用同样的方式可以得到: 将两式相加: 向量证明1 / 2 正弦定理和余弦定理 正弦定理 a/sinA=b/sinB=c/sinC=2R (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。 余弦定理 是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注) 本文来源:https://www.wddqw.com/doc/4974d20124fff705cc1755270722192e44365877.html