绝对值与零点分段法 绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题. 下面我们先复习一下有关绝对值的基本知识,然后进行例题分析. 一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即 绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值. 结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数. 例1 a,b为实数,下列各式对吗?若不对,应附加什么条件? (1)|a+b|=|a|+|b|; (2)|ab|=|a||b|;(3)|a-b|=|b-a|; (4)若|a|=b,则a=b; (5)若|a|<|b|,则a<b; (6)若a>b,则|a|>|b|. 例2 设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|. 例3 已知x<-3,化简:|3+|2-|1+x|||. 例5 若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值. 例6 若a,b,c为整数,且|a-b|99+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值. 例8 化简:|3x+1|+|2x-1|. 例9 已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值. 本文来源:https://www.wddqw.com/doc/8e0e39631be8b8f67c1cfad6195f312b3069eb40.html