实际问题与一元二次方程—比赛问题 教学目标 知识技能:能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型.能根据具体问题的实际意义检验结果是否合理. 数学思考:经历将实际问题抽象成为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对其进行描述. 解决问题:通过解决实际问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性发展实践应用意识. 情感态度:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用. 教学重点: 体育比赛场次中的数量关系。 教学难点:发现问题中的等量关系. 教学过程设计 回顾引入:解下列方程 x(x-1)=90 x(10-x)=24 x(x+2)=168 n(n1)245 n(n3)220 新课讲授 要组织一次篮球联赛,赛制为单循环形式,计划安排15场比赛,问应邀请多少个球队参加比赛? 分析思考:1、什么是单循环? 2、什么是双循环? 解:设邀请x个球队参加比赛。 - 1 - 拓展变形: 举办一次足球联赛,赛制为双循环形式,一共要比赛90场,共有多少个队参加比赛? 归纳总结 当个体为x个,总数为n时 单循环公式:x(x1)2n 双循环公式:x(x-1)=n 做题时先判断是单循环还是双循环,再套公式 变式练习,巩固强化 1、在一个QQ群里有n个网友在线,每个网友都向其他网友发出一条信息,共有20条信息,则n为 ( ) (思考:这题是 循环) A、10 B、6 C、5 D、4 2、一个小组有若干人,新年互送贺卡,若全组共送了 72 张,则这个 小组共有多少人? (思考:这题是 循环) 3、一次开会时,同事们见面后,倍感亲切,相互握手恭贺,这次共握手 28 次,一共有多少人参加开会?(思考:这题是 循环) 小结:1、怎样判断单、双循环。 2、套用公式 作业:各教师自定 - 2 - 本文来源:https://www.wddqw.com/doc/9242682aa5c30c22590102020740be1e650eccd8.html