二项式定理的推广及应用 曲靖市麒麟高级中学 车保勇 [摘 要] 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.深入研究二项式定理的推广及其用途,巧妙应用,能为许多数学问题提供另类解法,同时解决一些难度较大的问题.因此,进一步探讨二项式定理的推广及应用仍是一项有意义的工作.但前人得出的应用范围仅局限于求值、近似计算、整除、求余数、证明不等式等方面,而且在推广方面不够完善,笔者对二项式定理的推广作进一步完善,系统整理已有用途,并给出一种前人尚未提及的用途:即用二项式定理处理特殊极限问题.纵观全文,深入研究二项式定理的用途,不仅为一些数学问题提供了另类解法,更重要的是拓宽了二项式定理的应用范围. [关键词] 二项式定理 推广 方幂 应用 1 引言 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.数式二项式定理表述为:abnrnrrCnab,(n,rN,0rn).它有着r0n十分广泛的应用,遍及初等数学和高等数学领域[1] .认真研究问题的条件和结构,把一些表面与二项式定理或推广定理无关的问题作适当变形,构造出二项式定理或推广定理,再用其求解(证明),可使解题简洁明快.巧妙应用二项式定理或推广定理,不仅为许多问题提供另类解法,还能解决一些难度较大的数学问题.因此,把二项式定理进一步推广完善,并充分研究其用途,拓宽其应用范围,仍是一件有意义的工作. 2 问题的提出 虽然学者们对二项式定理的推广及应用的研究取得了丰硕的成果,但已有成果都存在两个不足方面:一是推广不够完善;二是应用范围不够广.针对此情况,笔者试图将其推广进一步完善,系统整理已有用途,并提出新的用途,拓宽其应用范围. 3 二项式定理的推广 二项式定理是在处理有关两个元素和的方幂问题时常常考虑到的一个重要公式.数式二项式定理表述为: CbCnranrbr,(n,rN,0rn) r0n!rrnrr其中Tr1Cnab叫做二项式的通项公式,Cn叫做二项式系数. r!nr!若令 n-rq, (ab)CaCabn0nn1nn1nCarnnrbrnnn则 3.1 推广一 Cnrn!,(n,rN,且r+q=n). r!q!在实际应用中,除遇到二项式外还常常遇到多项式问题,为便于应用,现将其作推广. 先考察三项式(abc)n(nN)的展开式: nn(abc)[(ab)c] nrrCnabcr rCn qnrqqCnbracr rqCnCnranrqbqcr若令nrqp,便得到三项式(abc)n(nN)展开式通项公式: rqCnCnrapbqcr(p,q,rN且p+q+r=n), n!(nr)!n!其中CnrCnqr叫三项式系数.[2] r!nr!q!nrq!r!q!p!类似地可得四项式(abcd)n(nN)通项公式为 其中n!称四项式系数.于是猜想m项式定理为: p!q!r!s!n!imi2a1i1a2am定理1(a1a2am)n,(ik,nN,k1,2,im!i1i2imni1!i2!n!apbqcrds(p,q,r,sN且p+q+r+s=n), p!q!r!s!,m). 在证明之前,先分析一下上述定理的结构.如果像二项、三项那样展开求和或用归纳法证明,显然十分繁琐,于是考虑用排列组合知识进行证明. r证明 设(a1a2am)nf(r1,r2,,rm)a1ra212rm,它的一般项可以这样am得到,从n个式子(a1a2am),,(a1a2am)中由r1个式子里取a1有r2Cnr1种方法,再由剩下的nr1个式子中选r2个式子取a2有Cnr1种方法,依次类推,从最后的nr1r2rm1rm个式子中选am有Cnrrrm12rm1种方法.于是选取这m个元素总共有CnrCnrr121rmCnr1r2rm1种方法,将所得元素相乘即为r2a1r1a2rmam,因此一般项系数为 f(r1,r2,r1r2,rm)CnCnr1 nr1!n!r1!nr1!r2!nr1r2!n!. r1!r2!rm!rmCnr1r2rm1 nr1r2rm!rm1! 于是定理得到证明. 这个结论结构优美,记忆简便,体现出数学美.[3] 3.2 推广二 由数式二项式定理可得(1x)nCnrxr,(n,rN,0rn).这里的n是正数,r0n当指数为负整数时,又是什么 情形呢? nn定理2 当1x1,n为正整数时(1x)n11x2x23nx3rnnx.其中rrr0xnrr n(n1)(n2)r!(nr1). 11x证明 (1)当n1时,左边(1x)1右边1xx2x3lim1xnn, 1x11x, 左边=右边,即上式成立. (2) 假设当nk时,有 1 lim(rk1xxxk22k33x)limxkrrrkrr0r成立, 则当nk1时,考虑 k1(1x)(11xk21x23k1x3k1 1(11)x(k211k1)x2k 11xk2x21r1其中 krxx) ()xxk1rrk1rk1r1rk1rr1r1 xxkrrk1r, (kr)!k!r!(k1)(k2)(kr)r!(kr)(kr1)k!xr1xr1 (r1)xr1 (r1)kxr1, 因为 lim(r1)kxr10, rk1r10, 所以 limrxrk1k1k1x)[(11x2x23x3所以 lim(1rx)](1x)k1rr(k1)k, 两边同时除以1x得 k112k1311xk lim(2x3xrx)(1x)k1rr, 即当nk1也成立. 综上所述,定理成立. 3.3 推广三 设m1,对于多项式(1xx2nmx)ajxj,约定展开式中含xmnj0j项的系数ajfm(n,j)xj,易得a1f1(n,j)xjCnj. 定理3 设(1xx2)na0a1xa2x2(1) a2nx2n,则 aj02nj3n; (2) a1a3a5(3) a0a3a6a2n1a2a4a1a4a7a2n; 3n1; a2a5a8(4) 当n为奇数时,a0a4a8(5) 当n为偶数时,a1a5a9(3)令x(31)则有 a0a1a22a2a6a10a3a7a11; . 证明 若令x1,则可得结论(1)和(2)成立. a2n2n0, 即 (a0a3a6)(a1a4a7)(a2a5a8)20, 由复数相等的定义可知结论(3)成立. 下面证明结论(4)和(5): 令xi则有 ina0a1ia2i2a2ni2n, 整理可得 [(a0a4a8)(a2a6a10)][(a1a5a9)(a3a7a11)]iin. 当n为奇数时,上式右边为纯虚数,所以左边实数部分为0,即结论(4)成立; 当n为偶数时,上式右边为实数,所以左边虚数部分为0,即结论(5)成立. 4 二项式定理的应用 二项式定理是代数中的一个重要定理,恰当应用二项式定理和其推广定理可使一些复杂问题简洁化,困难问题简单化. 4.1 在求值问题中的应用 巧妙运用二项式定理可使一些看似十分困难的求值问题简单化. 例1 用x表示实数x的小数部分,若a(51318)99,则aa的值为多少? 分析:此题表面看较为困难,但若能发现0513181,且(51318)(51318)1,便能迎刃而解. 解 令b(51318)99,因为(51318)(0,1),所以b(0,1), 由二项式定理有 01a(51318)99C99(513)99C99(513)981899rr C9r9(513)18 9999, (513)98C18991898C9901b(51318)99C99(513)99C99(513)9818 r9899 (1)rC99(513)99r18rC99(513)1898C991899, 199因为ab2[C99(513)9818C991899]是正整数, 所以 ab, 所以 aa(51318)99(51318)99[(51318)(51318)]991. 在挖掘出倒数关系(51318)(51318)1的基础上,巧妙构造b(51318)99来替代a是顺利解题的关键.[5] 例2 若(1xx2)1000的展开式为a0a1xa2x2a0a3a6a2000x2000,求a1998的值.(2001年全国高中数学联赛题) 解 令x1,可得, 31000a0a1a2a2000; (1) 令x,可得, 0a0a1a22a20002000, 13 (其中i,则31,且210); (2) 22令x2,可得 0a0a12a24a20004000; (3) 以上三式相加可得 310003(a0a3a6所以 a0a3a6a1998), a19983999. 对求有关二项式系数和的问题,常用赋值法.一般地,多项式f(x)的各项系数和为f(1),奇次项系数的和为[f(1)f(1)];偶次项系数和为1[f(1)f(1)].[6] 2124.2 在近似计算问题中的应用 求近似值问题常把二项式定理展开,根据精确度决定所取项数可使计算简捷.[7] 例3 求(0.997)5的近似值(精确到0.001). 分析: (0.997)5(10.003)5,简单构造二项式定理模型,展开按精确度要求取前两项计算便得符合条件的结果. 解 (0.997)5(10.003)5 150.003C52(0.003)2C5(0.003)5 1C5 150.0030.985. 4.3 在整除与余数问题中的应用 二项式定理是解决整除和余数问题最有效的策略之一. 例4 试证大于(13)2n(nN)的最小整数能被2n1整除.(第六届普特南数学竞赛题) 分析: 由(13)2n联想到其对偶式(13)2n(0,1),考虑二者之和即可. 证明 因为 0131, 所以 (13)2n(0,1). 由二项式定理可得 (13)2n(13)2n2(3nC22n3n1) 是偶数,记为2k(kN),则大于(13)2n的最小整数为2k. 又因为 2k(13)2n(13)2n[(13)2]n[(13)2]n 2n[(23)n(23)n], 由二项式定理知 (23)n(23)n是偶数,记为2k1(k1N), 所以 2k2n1k1. 即命题得证. 例5 今天是星期日,再过10100天后是星期几? 分析:此题实质是求10100除以7后的余数问题. 解 1010010050(98+2)50 0C C50908551908492C504998C,2 502因为前50项都能被7整除,只需考查250除以7所得余数. 250424848164(71)16 4C[101667C116715C176C. ]16于是得余数为4,故10100天后是星期四. 4.4 在不等式问题中的应用 利用二项式定理证明不等式,是二项式定理的一个重要应用.一般情况,在二项式展开式中取舍若干项,即可将相等关系转化为不等关系,从而获得相关不等式.特别在有关幂不等式和组合不等式方面有独特作用. 例6 求证:2(1)n31n1,(nN). 2n1证明 由二项式定理得 101121n1 (1)nCnCnCnCn2nnnnn1 11Cn22 n 2. 1111又 (1n)Cn0Cn1Cn22Cnnn nnnn11112112n12(1)(1)(1)(1)(1)(1)2!n3!nnn!nnn 2111 2!3!n!1111223n1 222213n1. 2 根据实际需要进行实际取舍相关项是这类题的关键. anbnabn[]. 例7 设a,bR,nN,求证:22 分析: 设asd,bsd,(s,dR且sd),则ab2s,再用二项式定理解题. 证明 设asd,bsd,(s,dR且sd), 于是有 anbn(sd)n(sd)n 0n2n222[CnsCnsd] 2sn; 又因为 ab2s, anbn2snabnsn[]. 所以 222即题目得证. 此题表面看似乎与二项式定理无关,但做换元后便露出其本质.它的nnabab结论也可以写成n.在高中数学教材不再介绍数学归纳法的情22况之下,二项式定理是证明这一不等式简捷且有效的途径.[8-13] 例8 设a,bR,且1.求证:对每个自然数nN都有(ab)nanbn22n2n1.(1998年全国高中数学竞赛题) 1a1b分析: 因为a,bR,且1,所以ab2; (ab)nanbn n1122 [(an1bab)nC(nab1a1b122n2ab)n2C(n1abn1n1 b]Can)再利用均值不等式求证. 证明 由 1及二项式定理得 (ab)nanbn 1n1ab Cn0anCnn1nnCnabn1Cnbanbn n22n2n1CnabCnabn1 1n12n22abCnab Cn1a1b2ab2, ab12 [(an1babn1)Cn(an2b2a2bn2)Cn12n1(abn1an1b)Cn] 12n1 (ab)n(CnCnCn) 2n(2n2)22n2n1. 本题一般用数学归纳法证明,但用二项式定理结合基本不等式证明更简捷明快. 4.5 在多项式问题中的应用 在实际应用中,除遇到二项式问题外还常常遇到多项式问题,利用推广定理可使解题方便快捷. 例10 求(3x2yz)7的展开式中含x3y2z5的项. 解 直接应用推广定理1有(3x2yz)7的展开式中x3y2z5项为 7!(3x)3(2y)2(z)5378x3y2z5. 3!2!5!例11 求(2x3x1)8中x4的系数. 分析: 直接展开项数太多,显得冗长复杂,利用定理1可快速解决. 解 (2x3x1)8的通项为于是有方程组 2pq4, pqr8;8!8!(2x)p(x)q(1)r2p(1)qrx2pq. p!q!r!p!q!r!其非负整数解为 故(2x3x1)8中x4的系数为 20(1)85 结论 p0q4, r4p1q2, r5p2q0. r68!8!8!2(1)722(1)6154. 0!4!4!1!2!5!2!0!6!本文首先将二项式定理进行推广,然后系统整理了二项式定理已有的用途,同时提出不同于前人成果的用途,即求解一些特殊极限问题.再以典型实例说明了二项式定理有着十分广泛的应用. 二项式定理在中学教材中占有的篇幅并不大,但其有着十分广泛的应用,可以从初等数学跨到高等数学中,可使一些困难问题简洁化.深入挖掘二项式定理及推广定理的应用,不但为教师教学提供参考,提供一种新的解题途径,且拓宽了二项式定理的应用范围. 本文存在着两方面的局限:一是推广没有从本质上突破前人的成果,只是将其进一步完善;二是在高等数学中的应用范围有待拓宽. 参考文献: [1] 刘玉琏,傅沛仁.数学分析讲义[M].北京:高等教育出版社,2003:156. [2] 耿玉霞.二项式定理的推广及应用[J].辽宁教育学院学报,2002,19(4):50—51. [3] 孙幸荣,曹学锋.二项式定理的推广及其应用[J].广西教育学院学报,2004,15(5):53—54. [4] 张盛.可换矩阵二项式定理的应用[J].锦州师范学院学报(自然科学版),2003,24(3):62—65. [5] 王荣峰.二项式定理的应用[J].高中数学教与学,2006,(10):24—25. [6] 唐先成.二项式定理及其应用[J].数学通讯,2002,(5):82—83. [7] 张文娣.二项式定理及其应用[J].甘肃联合大学学报(自然科学版),2004,18(4):90—91. 本文来源:https://www.wddqw.com/doc/9703e329dd80d4d8d15abe23482fb4daa58d1d2f.html