轴对称图形、中心对称图形的基本概念 轴对称图形的定义 如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。 轴对称图形的性质 1)如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。(对于一个图形来说) (2)把一格图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。这条直线就是对称轴。两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。(对于两个图形来说) (3)轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。 中心对称的定义 : 把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。 中心对称的性质: ① 于中心对称的两个图形是全等形。 ② 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 ③ 关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。 识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。 中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。 既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等. 只是轴对称图形的有:射线,角等腰三角形,等边三角形,等腰梯形等. 只是中心对称图形的有:平行四边形等. 既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等. 本文来源:https://www.wddqw.com/doc/a674e2a0ad1ffc4ffe4733687e21af45b207fe49.html