小波阈值去噪的基本原理_小波去噪阈值如何选取 小波阈值去噪的基本原理小波阈值去噪的基本思想是先设置一个临界阈值,若小波系数小于,认为该系数主要由噪声引起,去除这部分系数;若小波系数大于,则认为此系数主要是由信号引起,保留这部分系数,然后对处理后的小波系数进行小波逆变换得到去噪后的信号。具体步骤如下: (1)对带噪信号f(t)进行小波变换,得到一组小波分解系数Wj,k; (2)通过对小波分解系数Wj,k进行阈值处理,得到估计小波系数Wj,k,使Wj,k-uj,k尽可能的小; (3)利用估计的小波系数Wj,k进行小波重构,得到估计信号f(t),即为去噪后的信号。 提出了一种非常简洁的方法对小波系数Wkj,进行估计。对f(k)连续做几次小波分解后,有空间分布不均匀信号s(k)各尺度上小波系数Wkj,在某些特定位置有较大的值,这些点对应于原始信号s(k)的奇变位置和重要信息,而其他大部分位置的Wkj,较小;对于白噪声n(k),它对应的小波系数Wkj,在每个尺度上的分布都是均匀的,并随尺度的增加Wkj,系数的幅值减小。因此,通常的去噪办法是寻找一个合适的数作为阈值(门限),把低于的小波函数Wkj,(主要由信号n(k)引起),设为零,而对于高于的小波函数Wkj,(主要由信号s(k)引起),则予以保留或进行收缩,从而得到估计小波系数Wkj,它可理解为基本由信号s(k)引起,然后对Wkj进行重构,就可以重构原始信号。 本文提出的小波阈值去噪方法可以分为5步描述:(1)对带噪图像g(i,j)进行s层正交冗余小波变换,得到一组小波分解系数Wg(i,j)(s,j),其中j=1,2,s,s表示小波分解的层数。 小波阈值去噪法有着很好的数学理论支持,实现简单而又非常有效,因此取得了非常大的成功,并吸引了众多学者对其作进一步的研究与改进。这些研究集中在两个方面:对阈值选取的研究以及对阈值函数的研究。 阈值的确定在去噪过程中至关重要,目前使用的阈值可以分为全局阈值和局部适应阈值两类。其中,全局阈值是对各层所有的小波系数或同一层内不同方向的小波系数都选用同一 本文来源:https://www.wddqw.com/doc/aa9e73910640be1e650e52ea551810a6f424c862.html