梯形面积公式推导的多样方法 课本中介绍梯形面积公式推导的方法,通常只有一种方法,那就是用两个相同梯形拼成一个平行四边形,然后用这个平行四边形的面积推得其中梯形的面积。这种方法很简洁,实际上梯形面积公式推导还有其它方法,现介绍如下: 方法一:把一个梯形剪拼成平行四边形。 把梯形两腰的中点用线连起来,顺着这一条线剪下,把上面的梯形翻转和下面的梯形拼在一起,就成了一个平行四边形。 S梯形=S平行四边形=(上底+下底)×(高÷2) =(上底+下底)×高÷2 方法二:把一个梯形剪拼成一个三角形。 找到BC的中点E,把D和E用线连起来,剪下,按箭头的方向翻转,就拼成一个三角形. S梯形=S△AFD=(上底+下底)×高÷2 方法三:如图所示,把梯形切割成两块,一块是平行四边形,一块是三角形. 平行四边形的底就是原梯形的上底,三角形的底是梯形的下底与上底之差,而平行四边形和三角形的高都等于梯形的高. 所以,梯形的面积 = 平行四边形的面积+三角形的面积 = 上底×高+(下底-上底)×高÷2 =(2×上底)×高÷2+(下底-上底)×高÷2 =(2×上底+下底-上底)×高÷2 =(上底+下底)×高÷2 因此 梯形的面积 =(上底+下底)×高÷2 方法四:把梯形分成两个三角形,分别算面积,然后计算它们的和。 把梯形分成两个三角形,如图所示,一个在左下,一个在右上. 右上三角形的面积 = 上底×高÷2 左下三角形的面积 = 下底×高÷2 所以 梯形的面积 = 上底×高÷2+下底×高÷2 = (上底+下底)×高÷2 因此 梯形的面积 =(上底+下底)×高÷2 方法五:如图所示,把梯形的缺角补上,正好补成一个长方形,则: 长方形的面积=下底×高 而补上的两个小三角形的总面积为: 小三角形面积和=(下底-上底)×高÷2 所以梯形面积 = 长方形的面积-小三角形面积和 =下底×高-(下底-上底)×高÷2 = [下底-(下底-上底)÷2] ×高 = [2×下底-(下底-上底)] ×高÷2 =(上底+下底)×高÷2 方法六:如图所示,分别沿梯形两腰中点向下底作垂线,与腰、下底正好围成两个直角三角形,把这两个三角形分别按逆时针或顺时针旋转1800角,使得原来的梯形被拼组成一个长方形. 本文来源:https://www.wddqw.com/doc/ae5cfd207a563c1ec5da50e2524de518974bd340.html