高中等比数列求和公式 高中等比数列求和公式是Sn=a1 (1-q^n)/ (1-q)。 q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q),q=1时Sn=na1(a1为首项,an为第n项,d为公差,q为等比)。等比数列求和公式是求等比数列之和的公式。如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。 1、等比数列求和公式 q≠1时Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q) q=1时Sn=na1 (a1为首项,an为第n项,d为公差,q为等比) 这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。注:q=1时,{an}为常数列。利用等比数列求和公式可以快速的计算出该数列的和。 2、等比数列求和公式推导: Sn=a1+a2+a3+...+an(公比为q) qSn=a1q+a2q+a3q+...+anq=a2+a3+a4+...+an+a(n+1) Sn-qSn=(1-q)Sn=a1-a(n+1) a(n+1)=a1qn Sn=a1(1-qn)/(1-q)(q≠1) 本文来源:https://www.wddqw.com/doc/b5916ff50329bd64783e0912a216147917117ecb.html