勾股定理怎么算斜边 2020-06-06 14:36:26 文/张孟影 斜边为c,直角边分别为a,b。勾股定理:a²+b²=c²。已知直角边a,b的长度,则斜边长:c=√(a²+b²)。已知直角三角形的两条直角边,求斜边。方法是利用勾股定理:斜边=根号(两条直角边的平方和)。已知直角三角形的一个锐角a及其对边,求斜边。方法是利用正弦函数:斜边=(角a的对边)/sina。 勾股定律又称勾股弦定理、勾股定理,是一个基本的几何定理,指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,故称之为勾股定理。 意义 1.勾股定理的证明是论证几何的发端; 2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理; 3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解; 4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理; 5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条 定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。窗体顶端 本文来源:https://www.wddqw.com/doc/c929260bedfdc8d376eeaeaad1f34693daef101b.html