数轴知识讲解 责编:康红梅 【学习目标】 1.理解数轴的概念及三要素,能正确画出数轴; 2.能用数轴上的点表示有理数,初步感受数形结合的思想方法; 3.能利用数轴比较有理数的大小. 【要点梳理】 要点一、数轴 定义:规定了原点、正方向和单位长度的直线叫做数轴. 要点诠释: (1)定义中的“规定”二字是说原点的选定、正方向的取向、单位长度大小的确定,都是根据需要“规定”的.通常,习惯取向右为正方向. (2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等. 要点二、数轴的画法 (1)画一条直线(通常画成水平位置); (2)在这条直线上取一点作为原点,这点表示0; (3)规定直线上向右为正方向,画上箭头; (4)再选取适当的长度,从原点向右每隔一个单位长度取一点,依次标上1,2,3,…从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3,… 要点诠释: (1)原点的位置、单位长度的大小可根据实际情况适当选取. (2)确定单位长度时根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点. 要点三、数轴与有理数的关系 任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如. 要点诠释: (1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示. (2)一般地,在数轴上表示的两个数,右边的数总比左边的数大. 【典型例题】 类型一、数轴的概念及画法 1.如图所示是几位同学所画的数轴,其中正确的是( ) A.(1)(2)(3) B.(2)(3)(4) C.只有(2) D.(1)(2)(3)(4) 【答案】C 【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)中漏画了表示方向的箭头. 【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可. 2.(2015•徐州校级模拟)一只蚂蚁沿数轴从点A向右直爬15个单位到达点B,点B表示的数为﹣2,则点A所表示的数为( ) 第1页 共3页 A. 15 B. 13 C. -13 D.-17 【答案】D 【解析】设点A所表示的数为x,x+15=﹣2,解得:x=﹣17,故选:D. 【总结升华】本题考查的是数轴的知识,掌握数轴的概念和性质是解题的关键,点在数轴上的运动规律是向左减,向右加. 举一反三: 【变式】如图为北京地铁的部分线路.假设各站之间的距离相等且都表示为一个单位长.现以万寿路站为原点,向右的方向为正,那么木樨地站表示的数为________,古城站表示的数为________;如果改以古城站为原点,那么木樨地站表示的数变为________. 【答案】3,-5,8 类型二、利用数轴比较大小 3.在数轴上表示2.5,0,31,-1,-2.5,1,3有理数,并用“<”把它连接起来. 44【思路点拨】根据数轴的三要素先画好数轴,表示数的字母要依次对应有理数,然后根据在数轴上表示的两个数,右边的数总比左边的数大,比较大小. 【答案与解析】 如图所示,点A、B、C、D、E、F、G分别表示有理数2.5,0,31,-1,-2.5,1,3. 44 由上图可得:2.5131012.53 44【总结升华】注意数轴上整单位的点一般用细短线表示,而表示题目中的数的点,应画成实心的小圆点. 举一反三: 【变式1】(2014秋•埇桥区校级期中)有理数a、b在数轴上的位置如图所示,下列各式不成立的是( ) A.b﹣a>0 B.﹣b<0 C.﹣a>﹣b D.﹣ab<0 【答案】D 【变式2】填空: 大于3663且小于7的整数有______个; 比3小的非负整数是____________. 775【答案】11;0,1,2,3 4.若p,q两数在数轴上的位置如下图所示,请用“<”或“>”填空. ①p______q; ②-p______0; ③-p______-q; ④-p______q; 第2页 共3页 本文来源:https://www.wddqw.com/doc/d3c6512b86254b35eefdc8d376eeaeaad0f31693.html