社会学中回归分析r2的值 根据回归分析的公式和性质,可以用来衡量模拟效果好坏的几个量分别是相关指数,残差平方和和相关系数,只有残差平方和越小越好,其他的都是越大越好. 用系数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好,而用相关系数r的值判断模型的拟合效果时,|r|越大,模型的拟合效果越好, 由此可知相关指数R2的值越大,说明残差平方和越小. R是衡量两个变量之间相关程度的系数,是判定变量之间线性相关性的一个相对指标。相关系数用字母R表示,最早由英国统计学家卡尔·皮尔逊设计并提出。 相关系数R取值在±1之间,当R为0时,表示两个变量绝对不相关;当R大于0时,两个变量正相关,即你增加我也增加,你减少我也减少;当R小于0时,两个变量负相关,即你增加我减少,你减少我增加;当R等于1或-1时,表示两个变量绝对相关。 相关系数R越接近于±1,两个变量之间相关性越强。一般认为:当R值为±0.7或更大时,两个变量高度相关,即强相关;当R值在±0.5~±0.7之间时,两个变量中度相关;当R值在±0.3~±0.5之间时,两个变量弱相关;当R值低于±0.3时,说明两个变量之间几乎不存在相关关系。 相关系数R在回归分析中的作用主要有两点。 1、判断自变量与因变量的关系,以确定该自变量有没有纳入回归方程的必要(如果是一元回归,就是有没有做回归分析的必要)。一般情况下,如果R低于±0.5,则这个自变量不需要纳入回归方程。 2、用回归分析预测,对实际值与预测值进行相关分析,相关系数R代表着回归方程的精度,也即回归方程的拟合程度。 本文来源:https://www.wddqw.com/doc/e66b0ed09889680203d8ce2f0066f5335b816778.html