残差平方和 概念: 为了明确解释变量和随机误差各产生的效应是多少,统计学上把数据点与它在回归直线上相应位置的差异称残差,把每个残差的平方后加起来 称为残差平方和,它表示随机误差的效应。 意义: 每一点的y值的估计值和实际值的差的平方之和称为残差平方和,而y的实际值和平均值的差的平方之和称为总平方和。 定义: 协方差是关于如何调节协变量对因变量的影响效应,从而更加有效地分析实验处理效应的一种统计技术,也是对实验进行统计控制的一种综合方差分析和回归分析的方法。 意义 当研究者知道有些协变量会影响因变量,却不能够控制和不感兴趣时(当研究学习时间对学习绩效的影响,学生原来的学习基础、智力学习兴趣就是协变量),可以在实验处理前予以观测,然后在统计时运用协方差分析来处理。 将协变量对因变量的影响从自变量中分离出去,可以进一步提高实验精确度和统计检验灵敏度。 方差是用来度量单个变量 “自身变异”大小的总体参数,方差越大,该变量的变异越大; 协方差是用来度量两个变量之间 “协同变异”大小的总体参数,即二个变量相互影响大小的参数,协方差的绝对值越大,二个变量相互影响越大。 对于仅涉及单个变量的试验资料,由于其总变异仅为“自身变异”(如单因素完全随机设计试验资料,“自身变异”是指由处理和随机误差所引起的变异),因而可以用方差分析法进行分析; 对于涉及两个变量的试验资料,由于每个变量的总变异既包含了“自身变异”又包含了“协同变异”(是指由另一个变量所引起的变异),须采用协方差分析法来进行分析,才能得到正确结论。 方法 (一)回归模型的协方差分析 如果那些不能很好地进行试验控制的因素是可量测的,且又和试验结果之间存在直线回归关系,就可利用这种直线回归关系将各处理的观测值都矫正到初始条件相同时的结果,使得处理间的比较能在相同基础上进行,而得出正确结论。这一做法在统计上称为统计控制。 这时所进行的协方差分析是将回归分析和方差分析结合起来的一种统计分析方法,这种协方差分析称为回归模型的协方差分析。 (二)相关模型的协方差分析 方差分析中根据均方MS与期望均方EMS间的关系,可获得不同变异来源的方差分量估计值;在协方差分析中,根据均积MP与期望均积EMP间的关系,可获得不同变异来源的协方差分量估计值。 这种协方差分析称为相关模型的协方差分析。 残差平方和: 为了明确解释变量和随机误差各产生的效应是多少,统计学上把数据点与它在回归直线上相应位置的差异 称残差,把每个残差的平方后加起来 称为残差平方和,它表示随机误差的效应。 回归平方和 总偏差平方和=回归平方和 + 残差平方和。 残差平方和与总平方和的比值越小,判定系数 r2 的值就越大。 协变量:在实验的设计中,协变量是一个独立变量(解释变量),不为实验者所操纵,但仍影响实验结果。 本文来源:https://www.wddqw.com/doc/e804d8921937f111f18583d049649b6648d709c5.html