数学思想之数形结合思想概述

时间:2023-03-17 04:04:14 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。
数学思想之数形结合思想概述

1.数形结合思想的涵义

“数”早期是古代的计数,现在表示数量的概念;“形”早期是古代的形状,现在表示空

间的概念。家欧几里得用自己毕生精力完成《几何原本》这一千古流芳的巨著,这是体现数形转化的文字资料。柏拉图说过,只有数学存在的实体才具备永恒的可理解性,任何科学都只有建立在几何学带来的概念和模式上,才可以解释现象表面背后的结构和关系。教育家波利亚也曾说:“画一个图,并用符号表示”。

数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等等。

2.数形结合思想的发展

数轴的建立使人们对数与形的统一有了跳跃式的认识,把实数集与数轴上的点集一一对应起来,数可以视为点,点也可以视为数,点在直线上的位置可以数量化,而数的运算,也可以几何化。

在此基础上,笛卡尔又把数轴拓展到了直角坐标系。在高中数学中几乎所有图形都是建立在直角坐标系中,奠基人笛卡儿的主要数学成果都集中在他的“几何学”中。当时的代数学,他觉得它完全从属于法则和公式,不能成为一门改进智力的科学。因此他提出必须把几何与代数的优点结合起来,建立一种“真正的数学”。其核心内容是:把几何学的问题归结成代数形式的问题,用代数学的方法进行计算、证明,从而达到最终解决几何问题的目的。依照这种数学思想他创立


了我们现在的“解析几何学”。把相互对立着的“数”与“形”统一起来,使几何曲线与代数方程相结合。从而把线段与数量联系起来,通过线段之间的关系,“找出两种方式表达同一个量,这将构成一个方程”,然后根据方程的解所表示的线段间的关系进行作图。

“数形结合”一词的正式出现与中国数学界的传奇人物华罗庚先生息息相关。华老于19641月撰写了《谈谈与蜂房结构有关数学题》这一科普小册子,书中有一首小词:“数与形,本是相倚依,焉能分作两边飞。数无形时少直觉,形少数时难入微。数形结合百般好,隔离分家万事非;切莫忘,几何代数统一体,永远联系,切莫分离!”[1]。正因为华老在中国数学界的影响力,“数形结合”一词推出后不久,立即获得了数学界的普遍认同,几乎所有的数学教育教学刊物都出现了此词。

3.数形结合思想的运用

应用数形结合的思想,应注意以下数与形的转化:数形结合思想解决的问题常有以下几种:(1)构建函数模型并结合其图象求参数的取值范围;(2)构建函数模型并结合其图象研究方程根的范围;(3)构建函数模型并结合其图象研究量与量之间的大小关系;(4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;(5)构建立体几何模型研究代数问题;(6)构建解析几何中的斜率、截距、距离等模型研究最值问题;(7)构建方程模型,求根的个数;(8)研究图形的形状、位置关系、性质等.常见适用数形结合的两个着力点是:以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法。以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度。

具体操作时,应注意以下几点:(1)准确画出函数图象,注意函数的定义域;(2)用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先要把方程两边的代数式看作


本文来源:https://www.wddqw.com/doc/ecb2d828084c2e3f5727a5e9856a561252d3219a.html