考点一、实数的概念及分类 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 整数包括正整数、零、负整数。 正整数又叫自然数。 正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数 (1)开方开不尽的数,如7,32等; π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等; 3(3)有特定结构的数,如0.1010010001…等; 考点二、平方根、算数平方根 1、平方根 如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。 正数a的平方根记做“a”。 2、算术平方根 正数a的正的平方根叫做a的算术平方根,记作“a”。 正数和零的算术平方根都只有一个,零的算术平方根是零。 考点三、立方根 如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。 注意:3a3a,这说明三次根号内的负号可以移到根号外面。 考点四、实数大小的比较 1、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。 2、实数大小比较的几种常用方法 (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 (2)求差比较:设a、b是实数, ab0ab, ab0ab, ab0ab (3)求商比较法:设a、baaa1ab;1ab;1ab; bbb是两正实数,(4)绝对值比较法:设a、b是两负实数,则abab。 (5)平方法:设a、b是两负实数,则a2b2ab。 本文来源:https://www.wddqw.com/doc/f83f7c1f7fd184254b35eefdc8d376eeaeaa1768.html