实数有哪些

时间:2023-03-11 16:03:22 阅读: 最新文章 文档下载
说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。


实数有哪些

实数包括有理数和无理数,是有理数和无理数的总称。实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。 有理数的定义

有理数是指两个整数的比。有理数是整数和分数的集合。整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。 有理数的分类

()按有理数的定义分类:

(1)整数:整数就是像-3,-2,-1,0,1,2,3,10等这样的数。整数包括正整数、0、负整数。其中零和正整数统称自然数。

(2)分数:分数是一个整数a和一个正整数b的不等于整数的比。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。

()按有理数的性质分类:

(1)正有理数:除了负数、0、无理数的数字都是正有理数。正有






理数还被分为正整数和正分数。

(2)00是介于-11之间的整数,是最小的自然数,也是有理数。

(3)负有理数:负有理数指小于0的有理数,就是小于零并能用小数表示的数。 无理数是什么

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 见的无理数有非完全平方数的平方根、π和e等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”即没有长度“度量”)。

常见的无理数有哪些

1圆周率用希腊字母π表示,是一个常数(约等于3.141592654是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。

2e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔

3、黄金比例是一个定义为 (5-1)/2的无理数。 所被运用到的




本文来源:https://www.wddqw.com/doc/b745cb8325fff705cc1755270722192e453658e8.html